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ABSTRACT

KEYWORDS: Turbulent reacting flows; Combustion noise; Combustion instabil-

ity; Intermittency; Multifractals; Homoclinic orbits; Flame dynam-

ics; Bluff-body stabilized combustor.

Unsteady combustion in a confined, compressible flow-field can lead to the sponta-

neous excitation of self-sustained periodic oscillations, provided the heat release rate

fluctuations are in phase with the pressure fluctuations inside the confinement. These

periodic oscillations termed ‘combustion instability’ or‘thermoacoustic instability’ re-

main a major cause of concern in industrial applications as diverse as household burn-

ers which are used for cooking and heating, gas turbine engines used for propulsion

and power generation, as well as rocket engines used for space exploration and de-

fense applications. A description of the mechanism underlying the inception of such

self-sustained oscillations in combustors remain difficult even after decades of active

research as the dynamics involves a complex nonlinear interplay amongst the hydrody-

namic, acoustic and combustion processes.

The present thesis aims to identify the route through which combustion instability

is established from stable operating conditions, when the underlying flow field inside

the combustion chamber is turbulent. The work focuses on thedynamic transitions ob-

served in a bluff-body stabilized backward facing step combustor, when the air flow rate

(Reynolds number) is gradually increased keeping the fuel flow rate fixed. The operat-

ing conditions were varied from near unity equivalence ratios towards the lean blowout

limit. As a first step, the dynamics of unsteady pressure fluctuations acquired during

stable conditions is characterized. These fluctuations—which are termed as ‘combus-

tion noise’ in the literature—are often modelled as a stochastic process. Our results

indicate that combustion noise is in fact deterministic chaos with weak correlations (fi-

nite memory) and does not display properties one would expect from a typical random

process. Increasing the Reynolds number towards combustion instability leads to a loss

of this chaotic behaviour.
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It was observed that combustion instability is presaged by an intermittent regime

characterized by bursts of high-amplitude periodic oscillations that appear in a near

random manner from a background of low-amplitude chaotic fluctuations. Interaction

amongst the hydrodynamic and the acoustic subsystems results in the formation of ho-

moclinic orbits which can be identified in the reconstructedphase space of the pressure

time series. Such orbits result in occasional excursions ofthe dynamics away from the

low-amplitude regimes, leading to the formation of intermittent bursts in measurements.

Since combustion instability is an undesirable state in combustors, early warning signals

to an impending instability can be obtained by quantifying these intermittent states.

High speed images at instability reveal periodic vortex formation at the backward

facing step and impingement on the bluff-body and the spectrum of the flame inten-

sity reveals a strong peak at the subharmonic close to the acoustic mode. Based on

these experimental insights, a mechanism was proposed which necessitates that when

the underlying flow-field to be turbulent, the transition to combustion instability must

happen via the intermittency route. A phenomenological model is introduced based on

the mechanism that describes the onset of combustion instability as a lock-in between

hydrodynamics and the acoustic field. The model qualitatively reproduces the intermit-

tent behaviour observed in experiments and also provides early warning signals to an

impending transition.

Due to the inherent complexity of the dynamics, a fractal description was sought to

understand the scaling of pressure fluctuations observed prior to combustion instability.

It was found that these irregular pressure fluctuations are amenable to a multifractal

description; in other words, fluctuations of different amplitudes grow at different rates

within a short time range. The transition to combustion instability results in a collapse

of the number of relevant time scales in the problem, which leads to a loss of multifrac-

tality. This reduction in complexity can be quantified to actas yet another early warning

signal to combustion instability.

Intermittent burst oscillations were also observed as Reynolds number is increased

beyond regimes of combustion instability, as operating conditions near lean blowout.

High speed imaging of the flame in this intermittent regime reveals an aperiodic detach-

ment and reattachment of the flame from the lip of the bluff-body. These intermittent

regimes are thus seen to act a precursor to lean blowout as well.
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Such an intermittent regime was also observed in systems without combustion. In-

creasing the Reynolds number in a system comprising a duct terminated by an orifice

results in the onset of self-sustained pipe tone oscillations (whistling). It was observed

that the onset of whistling in such systems is also preceded by a regime of intermittent

burst oscillations, just as in combustors, provided the transition to whistling happens at

high Reynolds numbers. When whistling is established, the boundary condition at the

orifice is modified, which can be captured using a 1D linear acoustic model. The change

in boundary condition can also be used to explain the mergingof vortices downstream

of the orifice as has been observed previously.

These observations reinforce the idea that intermittency is a universal feature ob-

served in systems with turbulent flow-sound interaction prior to a regime of periodic

oscillations. Further, the nature of the problem requires that the effects of flow turbu-

lence be incorporated appropriately in the models and not just ignored as background

perturbations to the underlying dynamics, as is currently often done.
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CHAPTER 1

Introduction

Combustion instability refers to the self-sustained, large amplitude oscillations of the

unsteady pressure and velocity components in combustors. It arises primarily through

an interaction of the acoustic waves in a confined space with the unsteady rate of heat

release through combustion. The pressure waves are amplified by fluctuations in heat

release rate. These wave in turn modulate the rate of heat release after reflection from

the walls and boundaries of the combustion chamber.

When the rate of change of heat release by the flame responds inphase with the

unsteady pressure pulsations, a positive feedback loop is established (Rayleigh, 1878),

with the flame acting as an acoustic actuator and the combustion chamber as an acous-

tic resonator. The positive feedback amplifies an initial perturbation as the addition and

abstraction of heat occur during the compression and rarefaction phases of the pressure

oscillation, respectively. The fluctuations can thus grow exponentially until nonlinearity

takes over, resulting in a saturation of pressure amplitudewhen the total energy losses

from the chamber balances the energy input through combustion. Predicting and con-

trolling the onset of such oscillations, therefore, require an intimate understanding of

the interaction between the the acoustic pressure field and the processes that lead to a

fluctuating heat release.

Despite decades of active research, the appearance of combustion instability has

remained a serious problem in the design and development of combustors for rockets,

ramjets and gas turbines (McManuset al., 1993). When pulsations start spontaneously

at an operating condition, the combustor is said to be linearly unstable at that condition;

i.e., the combustor is prone to instability for arbitrarilysmall pressure disturbances that

may arise at that operating condition. By modelling the combustor as a series of network

elements with specified boundary conditions and performinga linear stability analysis,

conditions of linear instability have been successfully investigated for various design

configurations. In a network model, the analysis is performed in the frequency domain

wherein each element is described using a linear transfer function (Huber and Polifke,



2009a,b). These transfer functions describe the variation of acoustic pressure and ve-

locity within the elements and also provide the necessary boundary conditions across

the element interfaces. The stability of the combustor can then be easily determined by

examining the eigenvalues of a matrix composed of its transfer functions.

However, in many cases, a combustor that is linearly stable can be ‘triggered’ into

pulsating operation by introducing a pressure disturbanceof finite amplitude. Such dis-

turbances may arise, for instance, during spark plug ignition or small explosions in the

combustion chamber. In such a scenario, the dynamics insidecombustors is stable only

if the amplitude of initial disturbances falls below a certain threshold value, which in

general depends on the geometry of the combustor, fuel composition and the flow rates

inside the chamber. A qualitative change in the behaviour ofthe combustor from stable

operation to unstable operation is termed as a bifurcation.A transition to periodic oscil-

lations due to a change in the initial disturbances is characteristic of systems that exhibit

a subcritical Hopf bifurcation (Strogatz, 2001). For systems exhibiting subcritical Hopf

bifurcations, there exists a range of operating conditionsin a control parameter (like

the air flow rate) for which two stable solutions are possiblein the asymptotic state; the

solution which is manifested depends on the magnitude of theinitial perturbation. The

techniques of classical linear stability does not include the effects of initial conditions

in the analysis and hence cannot explain triggering.

Although much progress has been made over the last 50 years inassessing the sta-

bility margins of combustors, it has mostly been in the framework of classical linear

stability analysis. A comprehensive prediction of the conditions under which combus-

tion instability is established remains a difficult task, which has not yet been mastered.

In particular, prediction of the amplitude or the frequencyof oscillations at the onset

of instability remains a key challenge as surprisingly little is known—even in a qualita-

tive sense—about the key parameters controlling nonlinearflame dynamics (Zinn and

Lieuwen, 2005). Therefore, to describe the onset of combustion instability, estimate the

amplitude and frequency of the periodic oscillations and todescribe features such as

triggering, a nonlinear theory of combustion instability is necessary.
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1.1 The role of nonlinearities

In the 70’s and 80’s, much work was focused on identifying therole of nonlinear gas

dynamic processes in establishing combustion instability. The work was primarily mo-

tivated by instabilities in both solid and liquid rocket motors where the resultant am-

plitude of pressure oscillations can reach a significant proportion of the mean pressure

value; typical values correspond top′/p ≈ 20 − 50%. The nonlinearity of acous-

tic waves in the combustion chamber of a rocket motor were studied by Culick using

one-dimensional wave equations (Culick, 1970, 1976a,b, 1988). The response of com-

bustion to the pressure fluctuations were considered linear. The work paved the first

steps in tackling the general problem of analyzing the nonlinear growth and saturation

of the amplitude of acoustic waves in a combustion chamber. The limit-cycle amplitude

was determined numerically by solving a set of coupled nonlinear wave equations.

In contrast to the model proposed by Culick, Sterling (Sterling, 1993) reasoned that

the only nonlinearities of significance in a combustion chamber originated from the

combustion process itself and that the acoustic dynamics could be treated as essentially

linear. His idea was‘motivated by experimental results from a laboratory combustor

that demonstrated that the heat-addition and fluctuations are dominated by the Rayleigh

mechanism.’He concluded that in order to adequately represent the flame dynamics, a

nonlinear expression for heat release rate is necessary. Ithas also been subsequently

shown that the combustion response needs to be nonlinear to be able to trigger sponta-

neous pulsations in a combustor (Culick, 1994; Wickeret al., 1996). It should however

be mentioned that the nonlinear models adopted in these studies are ‘ad hoc’, and are

not derived from first principles.

Nonlinear gas dynamical processes are even less significantin premixed gas turbine

combustors, where reported pressure amplitudes are typically around1 − 5% of the

mean pressure value (Lieuwen, 2002; Dowling, 1997; Peracchio and Proscia, 1999).

Therefore, the acoustic (i.e., gas dynamic) processes remain in the linear regime, even

during combustion instability. These studies also highlight the fact that the dominant

nonlinear contribution arises from the relationship between flow and heat release oscil-

lations, which in the frequency domain is represented as a flame transfer function or a

flame describing function. Since the typical flow Mach numbers in a premix combus-

tor are low, the amplitude of pressure fluctuations tend to bequite small compared to
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the mean pressure, which allows a linear analysis of the acoustic processes, even if the

combustion response turns out to be nonlinear.

Later studies have confirmed that the heat release response in premixed combustors

is nonlinear (Hosseini and Lawn, 2005; Lieuwen, 2004; Preetham and Lieuwen, 2004,

2005). Typically, one needs to worry about nonlinear effects only when the amplitude of

the velocity fluctuations is comparable to the mean flow velocity. The response of bluff-

body stabilized lean premixed flames to acoustic forcing wasinvestigated by Balachan-

dran (2005) to understand the combustion response during limit cycle operation. They

found that that nonlinearity in heat release response becomes significant only when the

amplitude of inlet velocity fluctuations reaches around15% of the mean value, a value

that depends on the forcing frequency and the equivalence ratio. Tyagiet al.(2007) have

shown that the combustion response of non-premixed flames also becomes nonlinear,

even for very low amplitudes of acoustic excitation.

For the type of flow-fields that exist in a combustor, hydrodynamic instabilities play

an important role in the determining its overall stability.A large class of combustion

instabilities are driven by the interaction of vortices with flames and the acoustic field.

Such interactions also—to a great extent—dictate the structure of turbulent flames and

the corresponding rates of reaction inside the combustion chamber (Renardet al., 2000).

These interactions are inevitably, highly nonlinear.

1.2 Dynamical systems theory

A major share of the literature on the nonlinear analysis of combustion instabilities

has been restricted to obtaining nonlinear describing functions either experimentally or

theoretically (Noirayet al., 2008). The procedure involves decoupling the flame from

the acoustic field, and forcing the flame over all the possibleranges of frequencies and

amplitudes. The nonlinear flame describing function (or thenonlinear flame transfer

function) thus obtained is a function of both the amplitude and frequency which is then

substituted in the wave equation (transformed to the frequency domain) to model the

acoustic driving. The dispersion relation (relation connecting the frequency and the

wavenumber) is then solved for its eigenvalues at differentlevels of acoustic velocity

amplitude. These eigenvalues indicate the growth or decay in the system at any ampli-
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tude. The point of zero growth or decay rate is interpreted asa limit cycle. The stability

of a limit cycle is determined by the change in sign in the growth rate. A change in sign

of the growth rate to a negative value from a positive value with increasing amplitude

indicates that the limit cycle is stable. This is because perturbations with an amplitude

smaller than the limit cycle amplitude grow with time, whereas perturbations with am-

plitude larger than that at limit cycle decay to the limit cycle amplitude. Conversely, a

change in the growth rate from negative to positive with increasing amplitude indicates

that the limit cycle is unstable.

Although a large body of recent literature exists on this topic, it is not established

if the describing function technique can make accurate predictions. First, at its core,

the technique still relies on a linear analysis using eigenvalues to infer stability. More

importantly, the dynamics of a forced system is different from that of a self-evolving

system especially as regards the phase of the resulting oscillations (Pikovskyet al.,

2003) and the transient envelope of the growing oscillations (Burnley and Culick, 2000;

Culick, 2006). Recent studies have further shown that the stability margins obtained

using describing functions do not match with numerical simulations (Kashinath, 2013).

Time evolution of a typical pressure measurement made from the combustor can

give information about its stability and the nature of the resulting asymptotic state.

However, this information is highly dependent on the systemparameters, operating

conditions and often times the type of initial condition (the levels of flow noise, ignition

of a spark plug or an explosion) that exists inside the combustor. Hence, trying to assess

the stability of a combustor by following the evolution in time of pressure oscillations

individually for all the possible ranges of parameter values and initial conditions is

not only expensive, but also impractical. Tools from dynamical systems theory can

provide a systematic and efficient framework to investigateboth the linear (Trefethen

and Embree, 2005) and nonlinear (Burnley, 1996) behaviour of the system.

Jahnke and Culick (Jahnke and Culick, 1993) discussed the operating conditions

under which stable limit cycles can exist in a system which islinearly unstable, and

conditions under which bifurcations to a limit cycle can occur. Although Culick and

co-workers have applied some concepts from dynamical systems theory such as con-

tinuation methods (Burnley, 1996; Ananthkrishnanet al., 2005), they have not posed

the problem of combustion instability in the framework of dynamical systems theory.
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The technique saw its revival in recent years wherein the onset and triggering of com-

bustion instability was successfully investigated in a number of scenarios by Sujith and

coworkers (Balasubramanian and Sujith, 2008a,b; Mariappanet al., 2010, May 17-21,

2010; Mariappan and Sujith, 2010; Subramanian, 2011)

1.3 Secondary bifurcations

Pressure oscillations more complex than a limit cycle have also been reported previ-

ously in the context of combustion instability, by a few authors. Jahnke and Culick

(1994) reported the possibility of quasiperiodic oscillations (oscillations characterized

by two incommensurate dominant frequencies and their multiples) using numerical con-

tinuation in their model of a solid rocket motor. Using a numerical bifurcation analy-

sis, Sterling (1993) and later Lei and Turan (2009) reportedthe presence of chaotic

oscillations in models of premixed combustors. In experiments, Ficheraet al. (2001)

reported chaotic dynamics in a lean gas turbine combustor through an analysis of heat

release rate fluctuations.

Kabiraj et al. (Kabirajet al., 2010; Kabiraj and Sujith, 2011) performed bifurcation

analysis on pressure andCH∗ chemiluminescence time traces obtained from a simple

setup comprising of ducted, laminar premixed conical flamesto investigate the features

of nonlinear thermoacoustic oscillations. It was observedthat as the bifurcation param-

eter is varied, the system undergoes a series of bifurcations leading to characteristically

different states of nonlinear oscillations. Through the application of techniques from

nonlinear time series analysis, these oscillations were characterized as periodic, ape-

riodic or chaotic oscillations and subsequently, the nature of the obtained bifurcations

was explained based on dynamical systems theory. Their recent findings indicate that

limit cycle is just one of the possible end states in a combustor. A thermoacoustic sys-

tem can undergo further bifurcations and attain states characterized by quasiperiodicity,

period doubling, frequency locking and chaos. They have observed both the Ruelle-

Takens and the frequency locking quasi-periodic route to chaos in their experiments.

Using high speed flame images acquired simultaneously with the pressure time trace, it

was shown that the source of nonlinearity is in the interaction between the flame and the

acoustic field. These finding were later confirmed numerically by Kashinath (2013).
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1.4 Transition to combustion instability

The topics of combustion noise and combustion instability both figure fairly promi-

nently in the combustion literature (see for example (Strahle, 1978; McManuset al.,

1993; Candel, 2002; Culick, 2006; Candelet al., 2009; Schwarz and Janicka, 2009)

for extensive reviews on the topics). Lieuwen (2002) showedthat inherent noise in

a thermoacoustic system can strongly affect the limit cycles, and under certain oper-

ating conditions may even be responsible for causing the combustor to become stable

under linearly stable conditions. He also investigated thecharacteristics of the fluctu-

ating pressure in an unstable combustor (Lieuwen, 2001) andconcluded that the phase

drift characteristics are caused mainly by random processes (noise) and do not reflect

the underlying low-dimensional dynamics of the instability. The statistical characteris-

tics of self-excited and noise driven pressure oscillations in a premixed combustor were

investigated by Lieuwen (2003). Using experimental data, he showed that the prob-

ability density function of the amplitude of these oscillations transitions from Gaus-

sian to a Rayleigh-type distribution as the combustor movesfrom stable to unstable

operation. Lieuwen and Banaszuk (2005) considered the effect of background turbu-

lent fluctuations on the stability boundaries of a combustor. They show that additive

noise sources change only quantitative aspects of the combustor oscillations. However,

parametric noise sources can affect the dynamics qualitatively as well; in particular,

parametric noise can destabilize a system that is stable in the absence of these noise

sources.

However, most studies individually assess and contrast stable and unstable oper-

ation in combustors; studies that perform a smooth variation of operating parameters

starting from stable operation, leading towards instability remain few. Thus, although

various physical mechanisms responsible for combustion instability have been identi-

fied from earlier studies, the exact nature of transition, orthe pathways (routes) through

which instability is established is still not well understood. Chakravarthy and cowork-

ers (Chakravarthyet al., 2007b,a) performed a systematic variation of operating con-

ditions in bluff-body and backward-facing step combustorsfrom stable to unstable op-

eration in a single set of continuous experiments. They reported that the non-lock-on

regime (where vortex shedding and duct acoustics do not lock-on) is characterized by

low-amplitude broadband noise generation. However, at theonset of lock-on (between
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vortex shedding and duct acoustics), the broad band noise generation gives way to the

excitation of high-amplitude discrete tones, which could be limit cycle oscillations. Re-

cently, Gotodaet al. (2011) have presented results from an experimental investigation

on the onset of thermoacoustic oscillations for decreases in the fuel equivalence ratio.

The study employed novel methods of nonlinear time series analysis and reported the

possibility of encountering low dimensional chaotic oscillations in combustors.

1.5 Interim summary and motivation

Unsteady combustion in a turbulent, convecting air-fuel mixture tends to be noisy, even

more so when the heat release happens in a confined space (Strahle, 1978). These fluc-

tuations get amplified, when localized hydrodynamic perturbations augmented by the

heat release gets coupled to the acoustics of the chamber—resulting in self-sustained,

large amplitude pressure oscillations termed combustion instability (McManuset al.,

1993). Such oscillations are often detrimental and cause losses in billions of dollars of

annual revenue to the gas-turbine manufacturers. For instance, the repair and replace-

ment costs of hot section components due to combustion instability alone exceeds$1

billion annually and amounts to about70% of the non-fuel costs of F-class gas turbines

(ed: T. C. Lieuwen and Yang, 2005). Designers of high-energypropulsion and power

generation systems have hence resorted to conservative stability margins as a preventive

measure. Setting such conservative and often experience-based operational boundaries

results in increased levels ofNOx emissions, which makes it difficult for gas-turbine

manufacturers to meet the stringent emission norms. In propulsion devices such as

rockets and ramjets, one may not even have the flexibility of choosing such a conserva-

tive, stable operational boundary. Despite decades of active research, an understanding

of the mechanisms underlying this transition is far from complete and finding robust

precursors that can forewarn impending combustion instability remains an important

practical problem.
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1.6 Objective of the thesis

The objective of the present thesis is aimed at filling the lacunae as regards under-

standing, modelling and predicting the transition from stable operation in combustors

to detrimental large amplitude combustion instability. The outstanding questions raised

in the thesis may be summarized as follows:

1. Is combustion noise deterministic or stochastic?

2. How does low amplitude combustion noise transition to large amplitude combus-
tion instability?

3. Are there precursors to combustion instability?

1.6.1 Is combustion noise deterministic or stochastic?

The sources of combustion noise should be deterministic, asthey derive from fluid dy-

namic and combustion processes: flame roll-up, vortex coalescence or impingement,

fluid dilatation etc. (Coats, 1996), which are governed by a deterministic set of equa-

tions. The use of the term ‘noise’ to describe the phenomena,therefore, creates a lot of

confusion. However, combustion noise is typically modelled as an acoustic problem by

decoupling the hydrodynamics from the analysis. In a reviewby Candelet al. (2009),

the authors clearly describe the formulation and its drawbacks as follows:‘Studies of

combustion noise generally focus on situations where the flow dynamics can be con-

sidered to be independent of the radiated sound. It is implicitly assumed that the flow

dynamics is decoupled from the induced wave motion and the sound emission from un-

stable flames is generally not considered when dealing with combustion noise.’As they

further note, such a decoupling—although could ease computations—cannot be justi-

fied because practical systems are confined and boundaries reflect sound towards the

reactive region. In summary, there exists a gap between the ways in which combustion

noise is understood and theoretically modelled. Identifying whether combustion noise

is deterministic or not, therefore, forms the first major objective of the thesis.
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1.6.2 How does low amplitude combustion noise transition tolarge

amplitude combustion instability?

Combustion instability is also fundamentally treated as anacoustic problem and the

effects of turbulence are often times decoupled or neglected (Lieuwen, 2001, 2002,

2003; Noiray and Schuermans, 2013). The traditional approach in dealing with un-

steady measurements acquired from combustors is to treat these measurements as sig-

nals modulated by random perturbations. In models, turbulence is introduced as an

external perturbation to the wave equation—as random inputs or inputs with the prop-

erties determined by the measured power spectrum ( Clavinet al. (1994); Burnley and

Culick (2000); Lieuwen and Banaszuk (2005) to mention a few). In such a mean-field

description, the spectrum of dynamics under considerationis restricted to fixed points

and limit cycle oscillations, wherein the observed amplitude modulations in the mea-

sured data are described as the effects of background noise.The strategy then is to

identify conditions of linear instability of the system, the boundaries of which form the

margins of operability.

In turbulent combustors, the transition to self-sustainedoscillations from regimes of

stable operation can often be triggered due to the unsteadiness in the flow and combus-

tion. The distributions of the pressure measurements acquired from combustors well

before conditions of instability have a characteristic Gaussian distribution (Lieuwen,

2002) suggestive of dynamics dictated by random processes in these regimes. How-

ever, bursts of pressure oscillations have been reported close to critical transition to

instability in liquid-propellant rocket engines (Clavinet al., 1994). This erratic be-

haviour of pressure fluctuations was then incorporated as a multiplicative noise term in

the wave equation. For an unchoked fuel flow at the injector ina swirl combustor, Hong

et al. (2008) reported the presence of pressure oscillations thatalternated between a

‘noisy period of 200 Hz fluctuation and a silent period with a small pressure fluctua-

tion.’ Arndt et al. (2010) have observed a transition in the flame dynamics between a

state of stable combustion and self-excited oscillations in a premixed gas turbine model

combustor using simultaneousOH∗ chemiluminescence,OH∗ PLIF and stereoscopic

measurements.

Predicting the amplitude or frequency of such triggered oscillations, or even the sta-

bility margins of combustors remain yet a challenge for researchers in the field due to
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the complicated nature of the dynamics in combustors amongst the flow, heat release

and the chamber acoustics (Zinn and Lieuwen, 2005). An understanding of the univer-

sal features of such transitions is limited and operators often rely on heuristic measures

to prevent instability in fielded combustors. This limitation is possibly a consequence of

the traditional ‘signal plus noise’ paradigm assumed in theanalysis of such oscillations.

Since it is possible that the irregular fluctuations seen in measurements are a direct re-

sult of the inherent complexity of turbulent combustion dynamics, it is unclear whether

a separation of the measurements into a signal and noise is justified. Understanding and

characterizing these transition states forms another major objective of the thesis.

1.6.3 Are there precursors to combustion instability?

From a more practical viewpoint, an important additional question is to know whether

we can extract information about an impending instability,from the irregular states

observed prior to instability. The methodologies available in the literature to prevent

large-amplitude oscillations in combustors mostly focus on suppression of an incipient

instability, i.e., an instability that has already begun. The operational parameters are

modified based on a feedback signal acquired from the combustor, in order to suppress

the incipient instability. At other times, modifications are made at the design stage based

on operational experience as a passive control strategy. Poinsotet al. (1992) proposed

a technique for the active monitoring of combustion instability through modulations of

the pressure in the fuel line to suppress instabilities. This requires external actuators

and/or modification of combustor configuration and knowledge of frequency response

for an arbitrary input which limits its applicability to fielded systems. Further, the

detection and control strategy requires the system to reachinstability before control

can take over. Hence, it would be more desirable to look for early warning signals to

an impending instability—through active monitoring—so that instability is avoided in

combustors altogether.

Hobsonet al.(2000) analyzed combustor stability in terms of the bandwidth of com-

bustor casing vibration and dynamic pressure measurementsin combustion chambers.

They observed that bandwidth which is indicative of the damping decreases towards

zero as the combustors approach their stability limits. However, the presence of noise

in the combustion chamber could make the technique untenable in practice as it relies
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on a frequency domain analysis. Johnsonet al. (2000) presented a technique to deter-

mine the stability margin using exhaust flow and fuel injection rate modulation. The

technique is again limited in its scope as its applicabilityto practical combustors is

restricted by the need for acoustic drivers and pulsed fuel injectors.

Lieuwen (2005) used the autocorrelation of the acquired signal to characterize the

damping of the system and tracked the stability margin as theoperating parameter value

at which the damping goes to zero. This method again has the disadvantage that the dy-

namics of the system prior to onset cannot adequately be described using linear data

processing techniques. The method, for instance, may not beeffective for combustors

exhibiting pulsed instabilities or a noise-induced transition to instability. Also, the pres-

ence of multiple frequencies often seen in the frequency spectrum at the onset makes

the estimation of damping unclear.

The current solution adopted by combustion designers is thus to incorporate suf-

ficient stability margin into the design to prevent instabilities from occurring even in

the worst possible scenario. Setting such conservative estimates on operational regimes

leads to increased levels ofNOx emissions making it more difficult to meet the de-

manding emission norms. It is desirable to have measures that predict the instability

well before it happens because after the onset it may often betoo late to take adequate

control action to save the combustor from wear and tear or fatigue failure. There is thus

a need for precursors to an impending instability so that appropriate stability margins

may be devised to prevent the combustors from entering a regime of instability. Also,

in order that these early warning signals are sensitive to operating conditions, such as

ambient temperature or fuel composition, online stabilitymonitoring seems like the

optimal solution as a prevention methodology.

To resolve this question on precursors, we propose a formalism which involves

searching for precursors to instability in data acquired from turbulent combustion envi-

ronments, for conditions ranging from low amplitude combustion noise to high ampli-

tude combustion-driven oscillations. That the formalism is data driven should be seen as

an advantage, because models or simulations often contain many inherent assumptions

themselves. Further, suitable models can be appropriatelydevised once the underlying

mechanisms are well understood. The existence of precursors would imply that it is

possible at least in principle, to reconstruct the dynamicsthat generates low amplitude
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combustion noise. Identifying precursors—at the very least—should provide operators

of combustors with sufficient warning of impending oscillations.

1.7 Identifying precursors to combustion instability: Pro-

posed methodology

Early warning signals to combustion instability may also beobtained if measures can

be devised that quantify the irregular states in a measured signal observed in a combus-

tor prior to combustion instability. This requires that these irregular states be persistent

features of the dynamics and not merely transients that decay down to low-amplitude

fluctuations or large-amplitude periodic oscillations. This involves studying the dy-

namic characteristics of these states by identifying repeating patterns in such signals.

Also, since typical measures such as the amplitude of oscillations cannot serve as mea-

sures of bifurcation in such systems with varying amplitudes, one must also seek to

identify suitable bifurcation measures to study intermittent transitions to instability in

turbulent combustors.

Yet another way to obtain early warning measures is to force the system under con-

sideration with broadband noise (Wiesenfeld, 1985; Surovyatkina, 2005). The noise

gets selectively amplified at the instability frequencies when the operating conditions

are sufficiently close to instability. The width of the peak frequency in the amplitude

spectrum then informs of the proximity of the system to instability (Wiesenfeld, 1985).

Further, it has also been observed that there is a reduction in the bistable regime for

systems exhibiting subcritical bifurcation, when the levels of noise used to force the

system are increased (Surovyatkina, 2005). However, it should be noted that this pro-

cedure involves external stochastic forcing of a deterministic system; our interests lie in

describing the deterministic features of the system itself. Moreover, the dynamics of a

forced system is different from that of a self-evolving system especially with regards to

the phase of the resulting oscillations (Pikovskyet al., 2003) and the transient envelope

of the growing oscillations (Burnley, 1996; Culick, 2006).Also, introducing noise can

lead to noise-induced transitions (Jegadeesan and Sujtih,2013), with dynamics differ-

ent from that of the original system. Furthermore, it is well-known that a system chaotic

dynamics can result in signals that appear noisy.
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A chaotic time signal can be identified through its self-similar structure resulting in

patterns that fill non-integer dimensions called fractals.A fractal time series has sec-

tions that resemble the whole and hence can be distinguishedfrom stochastic signals

which are—by definition—devoid of any patterns. The non-integer dimension of occu-

pation of a fractal is termed the fractal dimension. A multifractal time series differs from

a fractal series in that it is composed of interwoven subsetswith different fractal dimen-

sions (Frisch and Parisi, 1985). Gouldin was the first to recognize the utility of applying

fractal geometry concepts to combustion problems in both turbulent premixed and dif-

fusion flames (Gouldin, 1987; Gouldinet al., 1989b,a). However, most of these and

several subsequent studies focused on the geometrical aspects of open flames. Using

hot film anemometry of the cold flow and Rayleigh scattering density measurements,

multifractality in the time series data of turbulent premixed open flames was illustrated

by Strahle and Jagoda (1989). However, the utility of the fractal description to mea-

surements made in confined combusting environments has not been explored save for a

recent study on the pressure fluctuations acquired prior to lean blowout (Gotodaet al.,

2012).

Since a multifractal process entails multiple time scales,it must necessarily dis-

play a broad spectrum in the frequency domain, such as one would observe in turbulent

velocity measurements. It is now well-known that turbulentvelocity measures are mul-

tifractal (Meneveau and Sreenivasan (1987, 1989, 1991); Sreenivasan and Meneveau

(1986, 1988); Prasadet al. (1988) to name a few pioneering studies; see Sreenivasan

(1991) for an excellent review on the subject). Energy injected into a turbulent flow at

large scales cascade down multiplicatively through the inertial subrange down to Kol-

mogorov scales, where it is finally dissipated. The multifractal formalism is necessary

to understand and explain the reason for the intermittency observed in the measurements

of this energy dissipation rates in the inertial range.

The amplitude spectrum of ducted combustion noise is also known have a broad

profile in the frequency domain with shallow peaks in the vicinity of acoustic modes

of the duct (Chakravarthyet al., 2007a). It would therefore be interesting to examine,

whether measured pressure fluctuations acquired during such stable operating condi-

tions in combustors are amenable to a multifractal description. We know that the tran-

sition to combustion instability results in a transition ofthe spectrum, from a broad

one with shallow peaks, to one with sharp, discrete peaks. Provided combustion noise
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is multifractal, we should therefore expect deviations from this multifractality, when

the operating conditions are varied systematically towards combustion instability. Such

deviations—if they exist—are of prognostic value, since they presage an impending

instability.

1.8 Overview of the thesis

To achieve these objectives, experiments were performed ona laboratory scale combus-

tor operating in a turbulent flow-field combustor to acquire unsteady pressure measure-

ments and high speed flame images for a variety of operating conditions from stable

operation towards combustion instability. Then, techniques from nonlinear time se-

ries analysis such as phase space reconstruction, recurrence quantification and fractal

analysis are applied to the measured time signals to characterize the various dynamical

states in order to identify the routes (pathways) underlying such undesirable transitions

in combustors. Finally, precursor measures are sought for to provide an operator of

fielded combustion systems with early warning signals of an impending combustion

instability so that such regimes are avoided altogether.

The remainder of the thesis is organized as follows. Schematics of the experimental

setup and details of data acquisition and post-processing are provided inChapter 2.

The study principally focusses on a bluff-body stabilized backward facing step com-

bustor burning LPG as fuel. The results presented in the study also hold true for a swirl

stabilized combustor the results of which have been presented elsewhere (see list of

publications).

In Chapter 3, the nature of the dynamics of pressure fluctuations acquired during

stable operating conditions at operating conditions far away from the stability margin

are investigated. The technique of phase space reconstruction in introduced and the

methods to investigate determinism in a time series are illustrated. Finally, a test for

chaos is described to understand whether the irregularity in the pressure fluctuations

signify chaotic dynamics.

The irregular burst states reported in the literature and observed prior to combustion

instability are explored inChapter 4. Methods to construct bifurcations diagrams for

signals with varying amplitudes are introduced. Repeatingpatterns in the dynamics are
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tracked using recurrence plots and the transition in the patterns at various dynamical

states are highlighted. A mechanism is proposed to describethe onset of combustion

instability in a turbulent flow-field.

Chapter 5 discusses a phenomenological model for the intermittent burst states

which is derived from first principles based on the proposed mechanism. The model in-

corporates the hydrodynamic contributions to the combustion instability problem both

due to turbulence and due to periodic vortex formation and impingement in the com-

bustion chamber. The possibility of devising model-based early warning measures are

also explored.

The fractal scaling of combustion noise is explored inChapter 6. The methods

to determine the generalized scaling behaviour of normalized moments of a measured

pressure time signal are introduced and the possibility of amultifractal description of

combustion noise is explored.

In Chapter 7, the possibility of intermittent burst oscillations closeto lean blowout

is investigated. A description of the intermittent dynamics as arising through the forma-

tion of homoclinic orbits with subsystems operating over different time/length scales is

introduced. The flame dynamics of the states observed prior to lean blowout are also

presented and contrasted with the flame dynamics observed during combustion insta-

bility.

Chapter 8 asks the question whether unsteady combustion and heat release are

necessary to obtain intermittency and the precursors discussed previously. Using a

simple setup consisting of a ducted unsteady flow across an orifice, the transition to

self-sustained oscillations (whistling) is investigatedby measuring the pressure fluctu-

ations just outside the lip of the orifice. A mechanism is proposed to explain the onset

of whistling and the presence of precursors to whistling is explored.

Finally, the conclusions derived from the study are summarized inChapter 9 along

with an outlook for future investigations.
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CHAPTER 2

Experiments

This chapter describes the experimental setup and the instrumentation used to obtain

the measurements reported in the study.

2.1 Setup

Experiments were conducted on a backward-facing step combustor geometry with the

flame stabilized using a circular bluff-body operating at high Reynolds number (Re >

18000). Schematics of the setup for the measurements reported in the current study is

shown in Fig. 2.1. It consists of an upstream plenum, a burnerof 40mm diameter and a

combustion chamber of cross-section90× 90mm2 with extension ducts. The length of

the combustion chamber along with the extension ducts was700mm. A support mech-

anism that hinges on the plenum was used to traverse a shaft of16mm diameter into the

burner. The bluff-body—a circular disk of diameter47mm and thickness10mm—was

then attached to this shaft and was positioned50mm from the rearward facing step us-

ing a rack and pinion traverse of least count1mm. The central shaft was used to deliver

fuel (LPG) into the chamber through four radial injection holes of diameter1.7mm

and spark-ignited in the recirculation zone at the dump plane using an11kV ignition

transformer. The fuel injection location was160mm upstream from the bluff-body. A

circular disk of2mm thickness and40mm diameter with 300 holes of diameter1.7mm

was inserted30mm downstream of the fuel-injection location to prevent flashback. It

also served to reduce the influence of pressure perturbations in the plenum on the dy-

namics happening inside the combustion chamber. A blow-down mechanism was used

to supply air from high pressure tanks which then passed through a moisture separator

before finally entering the plenum chamber.



Figure 2.1: (a) The experimental setup used in the current study. The length of the
combustion chamber is700mm with three extension ducts, two of length
300mm and one of length100mm. The measurements reported in this study
were acquired using a piezoelectric transducer located90mm from the
backward facing step. The design of the combustor was adapted from Ko-
marek and Polifke (2012).

2.2 Measurements

Unsteady pressure measurements (p′) were acquired for3s at 10kHz using piezoelec-

tric transducers with a sensitivity of72.5mV/kPa, 0.48Pa resolution and±0.64% un-

certainty. The voltage signals from the transducers were acquired using a 16-bit A-D

conversion card (NI-643) that had a resolution of±0.15mV and an input voltage range

of ±5V . The transducers were mounted on specially made pressure ports with Teflon

adapters which were flush mounted on the combustor wall. Semi-infinite tubes were

provided to the pressure ports to prevent acoustic resonance within the mount. The

configuration helps prevent the transducers from excess heating and also ensured that

the phase correction required was less than20.

Mass flow controllers (Alicat Scientific, MCR Series) with digital logging and mon-

itoring capabilities were used to measure and control the supply fuel and air into the

combustion chamber and had a measurement uncertainty of±(0.8% of reading+0.2%

of full scale). Liquified Petroleum Gas (LPG) was used as the fuel which is60% C4H10

and40% C3H8 by volume. The fuel flow rate (̇mf ) is held fixed and the air flow rate

(ṁa) is gradually increased leading to progressively increasing values of Reynolds num-

ber (decreasing equivalence ratioφ). At each flow condition, the flow was allowed to

18



settle for10s before acquiring the pressure data to remove transients associated with the

change in mass flow rate. The Reynolds number was computed using the expression

Re = 4ṁD1/πµD
2
0, whereṁ (= ṁa+ṁf ) is the mass flow rate of the fuel-air mixture,

D0 is the diameter of the burner,D1 is diameter of the circular bluff-body andµ is the

dynamic viscosity of the fuel-air at the experiment conditions. Corrections to Reynolds

number due to the change in viscosity for the varying fuel-air ratios were performed,

the procedure for which can be found in Wilke (1950).

For selected operating conditions, high speed images withCH∗ filter (transmission

peaks around a wave length of431nm and bandwidth of10nm) were also acquired si-

multaneously with the pressure measurements at a frame rateof 1kHz using a Phantom

v12.1 high speed camera (resolution1280× 800 pixels.
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CHAPTER 3

What is combustion noise?

Combustion noise has been traditionally treated as stochastic fluctuations present in

the background of the dynamics in combustors amongst the flow, heat release and the

chamber acoustics. The aim of the current chapter is to studywhether the pressure

signals acquired from the combustor during stable operating conditions (termed ‘com-

bustion noise’) show signs of determinism. The presence of determinism would im-

ply predictability in the underlying dynamics and allows for the possibility of devising

precursor measures that can forewarn the onset of an impending combustion instabil-

ity. Precursors to such a transition from chaos to dynamics dominated by periodic

oscillations are of interest to designers and operators of combustors in estimating the

boundaries of operability. Techniques from nonlinear timeseries are used to embed the

pressure signals into its underlying mathematical phase space. Then separate tests for

determinism (Kaplan-Glass test) and chaos (0-1 test for chaos) are utilized to probe the

dynamic features of the measured pressure fluctuations.

3.1 Reconstructing the phase space

The amount of experimental data available at the disposal ofan experimental researcher

is often just a few variables and in extreme cases just one measurement. The dynamics

of a combustor at different operating conditions can be visualized by reconstructing the

mathematical phase space of evolution of the time series data of unsteady pressure mea-

surements acquired at those conditions. In such a reconstructed phase space (Takens,

1985), limit cycle oscillations would correspond to a closed loop around a fixed point.

Such a reconstruction, also known as delay-embedding, involves converting the

measured time series into a set of delay vectors each of whichhas a one-to-one cor-

respondence with one of the dynamic variables involved in the combustor dynamics.

That is, we construct the vectors[p′(t), p′(t + τ), p′(t + 2τ), ..., p′(t + d − 1)τ ] from

the measured pressure datap′(t) such that these vectors in combination provide us with



maximum information on the combustor dynamics. The elements of these vectors are

the coordinates in thed-dimensional phase space of evolution of the time signal. For

instance,p′

i
(d) = [p′(ti), p

′(ti + τ), p′(ti + 2τ), ..., p′(ti + d − 1)τ ] is the point in the

d-dimensional phase space at time instantti. To accomplish an appropriate reconstruc-

tion, we need to obtain the optimum time lag (τopt) amongst the delay vectors and the

least embedding dimension (d0) for the phase space composed of these delay vectors

such that the dynamics is faithfully captured.

3.1.1 Obtaining the optimum time delay

The optimum delayτopt may be estimated as that value ofτ for which the average

mutual information (Abarbanelet al., 1993) between the delay vectors reaches its first

minimum. The average mutual information of a signalp′(t) is given by the expression:

I(τ) =
N
∑

i=1

P (p′(t), p′(t + τ))log2

[

P (p′(t), p(t+ τ)

P (p′(t))P (p′(t+ τ))

]

(3.1)

where,P (S) represents the probability of the eventS.

To compute the average mutual information for various time lagsτ , we first nor-

malize the time signalp′(t) to lie between 0 and 1 and then sort the data in bins. The

probability distributionsp′(t) andp′(t + τ) are then obtained by normalizing the his-

tograms on these bins. Similarly, the joint probability distributionP (p′(t), p′(t+ τ)) is

obtained by normalizing a two dimensional histogram obtained on a two dimensional

bin in p′(t) andp′(t+ τ).

Average mutual information, which is a function of the time distance between the

data points of a time series, is an indicator of the amount of information shared by two

sets of data. The location of the minimum would, therefore, correspond to a set of

vectors that would provide more information about the system than either of them in

isolation. Shown in Fig. 3.1(a) is the measured pressure fluctuations during stable op-

eration of the combustor (φ = 1.1, Re = 1.83×104). The amplitude of the fluctuations

vary wildly and give the appearance of an aperiodic noisy signal. The corresponding

average mutual information for data has its first minimumτopt = 1.1ms (Fig. 3.1(b)).

This values corresponds approximately toT/4 whereT is the time period of oscillation
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Figure 3.1: (a) The pressure signal obtained at stable operating regime from the com-
bustor with the bluff-body stabilized flame (φ = 1.1, Re = 1.8 × 104).
(b) The average mutual information for the signal. The optimal delay is
τopt = 1.1ms.

at combustion instability. This time period was discerned from the FFT of the pressure

signal at combustion instability. The delay vectorp′(ti + τopt) can thus alternately be

seen to be related to the acoustic velocity in a one-to-one fashion since the acoustic

pressure and velocity differ in phase by900 for a standing wave pattern in the duct. The

small deviation from900 is due to damping.

The plot ofIτ further shows that the signal displays correlations that decay very

fast. This rapid decay of average mutual information implies that the signal has a finite

memory of the past and hence indicates the possibility of determinism.

3.1.2 Optimum embedding dimension

To obtain a suitable dimensiond0 in which the attractor dynamics unfold, we use the

technique developed by Cao (1997). This is an optimized version of the False Nearest

Neighbors (FNNs) method (Abarbanelet al., 1993) wherein one tracks the number

of false neighbours to each point in the phase space as the embedding dimension is

progressively increased. A false neighbour to a point in phase space is one that moves

away from it once the embedding dimension is increased. Mathematically, once the
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optimum time lag has been obtained, we can construct a measurea(i, d) of the form:

a(i, d) =
||p′

i
(d+ 1)− p′

n(i,d)(d+ 1)||
||p′

i
(d)− p′

n(i,d)(d)||
(3.2)

wherei = 1, 2, . . . , (N − dτ) andn(i, d) is the index of the nearest neighbouring point

in phase space to the pointp′

i
. ||. . . || represents the Euclidean distance between two

points. The dependency on the indexi is removed by taking the averagea(i, d) obtained

at different values ofi as:

E(d) =
1

N − dτopt

N−dτopt
∑

i=1

a(i, d) (3.3)

Here,E(d) is a function only of the dimensiond and the optimum time lagτopt. The

variation ofE(d) on increasing the dimension fromd to d+1 is determined by defining

E1(d) as:

E1(d) =
E(d+ 1)

E(d)
(3.4)

If E1(d) stops changing when the value ofd is greater thand0, thend0 is chosen as

the minimum embedding dimension for the time series. Since the acquired time signal

is limited, it is often difficult to distinguish a stochasticsignal from a deterministic sig-

nal merely by observing the variation ofE1(d) for various values ofd. WhereasE1(d)

saturates beyond a value ofd for a deterministic signal, it always increases with increas-

ing d for random signals. To clearly distinguish deterministic signals from stochastic

signals, we define an additional measureE2(d) from the time seriesp′(t) as:

E2(d) =
E∗(d+ 1)

E∗(d)
(3.5)

where

E∗(d) =
1

N − dτopt

N−dτopt
∑

i=1

|p(i+ dτopt − p(n(i, d) + dτopt)| (3.6)

Since future values are independent of past values for random signals,E2(d) equals
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one for all values ofd (Cao, 1997). That is,E2(d) is independent ofd. For deterministic

signals on the other hand,E2(d) is dependent ond, because of which there must exist

some values ofd for which E2(d) is not equal to one. The validation of the compu-

tational procedure on a simple system comprising three coupled nonlinear differential

equations is provided in Appendix A.

Figure 3.2: The measuresE1(d) andE2(d) for the combustion noise data on applying
Cao’s method (φ = 1.1, Re = 1.83 × 104). The plot ofE1(d) saturates
afterd = 10. Also, the values ofE2(d) do not equal 1 for all values ofd.
This indicates that combustion noise is deterministic withmoderately high
dimensions.

The variation ofE1 andE2 for the combustion noise data are shown in Fig. 3.2. The

least embedding dimension for the combustion noise data canbe taken to bed0 = 10 as

the measureE1 does not vary significantly afterd = 10. Also, the value of the measure

E2(d) is not equal to 1 for all values ofd. Hence, we see that combustion noise is

deterministic with a moderately high dimensional attractor. Although, average mutual

information and Cao’s method to determine the least embedding dimension provides

us with information as to whether the signal is deterministic or not, additional tests are

often performed to confirm the determinism in measured signals. One of such methods

is described in what follows.

3.2 Kaplan-Glass test for determinism

The local flow test for determinism is a discrete adaptation (Kaplan, 1993) of a tech-

nique devised by Kaplan and Glass (1992) for continuous dynamical systems. After

delay-embedding the time series, one selects points in the phase space that are close

to each other. These points are then evolved in time for a short duration known as the

translation horizon. Points in the phase space that are close to each other tend to move
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in the same direction for deterministic signals and in random directions for stochastic

signals. Hence, for a given translation horizon, we construct vectors that connect the

initial and final points, which are then normalized and averaged. These averaged vectors

would then be larger for deterministic signals. The processis then repeated for various

translation horizons. For deterministic signals, although the deterministic structure is

preserved for short horizons, it is lost once the translation horizon is made too large.

Hence, the average vector lengths will be small once the translation horizon is made

large.

3.2.1 Computational procedure

To construct a measure of determinism, we first cover the phase space with a grid of

non-overlapping hypercubes (cubes ind0 dimensions). The number of points in each

cube isnj with time indicest(j,1), t(j,2), ..., t(j,nj). If H is the translation horizon, the

change in state from timet(j,k) to t(j,k) + H for each of thenj points in the cubej is

given by:

∆pj,k = p(tj,k +H)− p(tj,k) (3.7)

wherek = 1, 2, ..., nj. Note that here we have explicitly written out the index in terms

of time to distinguish different points within the same hypercube. Points near the edge

of a cloud of points will have a directional bias towards the middle of the cloud (Kaplan,

1993). To correct for this,∆p′

j,k
is mapped onto a sine function as:

∆p′

j,k
=

[

sin

(

2π
p′(tj,k +H)− p′(tj,k)

λ

)

,

sin

(

2π
p′(tj,k +H + τ)− p′(tj,k + τ)

λ

)

, ...,

sin

(

2π
p′(tj,k +H + (d− 1)τ)− p′(tj,k + (d− 1)τ)

λ

)]

(3.8)

whereλ is the characteristic length of the embedded attractor in phase space. Summing

up all vectors through hypercube of indexj, we obtain the resultant vectorVj normal-

ized by the number of vectors passing through the cubenj in the following fashion:
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Vj =
1

nj

∑

k

∆p′

j,k

||∆p′

j,k
|| (3.9)

We can then define a measureΛ that quantifies local flow in phase space by averag-

ing over the vectorsVj based on the number of vectors present in the hypercube (say,

l), as:

Λ =

〈

V 2
l − c2d0/l

1− c2d0/l

〉

(3.10)

Here,Vl represents the norm ofVl (the replaced index in the subscript indicative of

the new ordering) andcE is a constant defined as (Kaplan and Glass, 1992):

cd0 =

√

2

d0

Γ

(

d0 + 1

2

)

Γ

(

d0
2

) (3.11)

with Γ being the standard gamma function. The measureΛ retains values close to 1

for deterministic signals and has values close to zero for stochastic signals (Kaplan and

Glass, 1992).

AlthoughΛ quantifies local flow, it is insensitive to false positives that may arise

due to a directional preference in the time series. The method of surrogate data helps to

circumvent this uncertainty.

3.2.2 Surrogate data analysis

Interpretation of results from experimentally acquired data can sometimes pose prob-

lems because filtered noise data can occasionally give the impression of chaos and low-

dimensional dynamics. The technique of surrogate data analysis provides an efficient

method to avoid such misinterpretations. One starts the analysis with a null hypothesis

(the default position in the absence of evidence to the contrary) that the experimental

data can be described by a linear stochastic model. Surrogate data sets are generated

from a measured signal such that they retain certain characteristics of the original data

(such as number of data points, mean and standard deviation)while ensuring that the
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data is sufficiently randomized so that any deterministic structure that may be present

in the original data is destroyed (Theileret al., 1992). Techniques like the determinism

tests are then applied to both the original data and the surrogate data. If the results

are similar for the experimental and surrogate data sets; i.e., if the predictions of the

tests are equally good or bad, then one cannot reject the nullhypothesis that a linear

stochastic model is sufficient to describe the experimentaldata.

One of the techniques of surrogate generation involves randomly shuffling the data

values in the signal, without adding or subtracting data (West, 2006). Such a random

shuffling destroys any correlation originally present among the data points. This pro-

duces a random time signal that has the same mean and standarddeviation as the origi-

nal time series.

Figure 3.3: Results on applying the local flow method of determinism on the combus-
tion noise data (φ = 1.1, Re = 1.83 × 104,τopt = 1.1ms). Whereas the
original data shows high levels of determinism, it is lost when the data val-
ues are randomly shuffled. The embedding dimension was kept as d0 = 10
for all the data sets.τopt for the surrogate sets was kept the same as that
for original data for the sake of comparison. The spikes in the surrogate
data correspond to those values of translation horizonH that are multiples
of the optimum time delayτopt non-dimensionalized by the sampling time
(0.1ms).
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3.2.3 Determinism in combustion noise

Surrogate data sets were constructed from unsteady pressure measurements acquired

during combustion noise with the same mean, standard deviation and power spectrum

as the original data. Then the local flow test for determinismwas applied on both the

original and surrogate data sets and the results are shown inFig. 3.3. Whereas the

measureΛ remains fairly close to one for the original data over a rangeof translation

horizons, they remain at a lower value close to zero for the surrogate data sets. The

occasional spikes correspond to those values of translation horizon which are multiples

of τopt (normalized by the sampling time). This happens because thedelay vectors

partially overlap after moving over a distanceτopt which also happens to be the optimum

delay chosen for embedding. Hence, we have convincing evidence that combustion

noise is deterministic. Thus, the traditional signal plus noise paradigm often implicitly

assumed in models and analysis of experimental data sets (Clavin et al., 1994; Burnley

and Culick, 2000; Lieuwen, 2001, 2002, 2003; Lieuwen and Banaszuk, 2005) needs to

be reexamined if one wishes to capture the onset of instabilities in combustors because

these irregular fluctuations may contain useful information of prognostic value.

3.3 The 0-1 test for chaos

The motivation behind the 0-1 test (Gottwald and Melbourne,2004) is that when the

combustor encounters limit cycle oscillations, the dynamics transitions from chaotic to

regular. The signalp′(t) is measured ensuring that the acquired value at each instant

provides essentially little information about future values at stable operation. This can

be done by sampling at a time interval corresponding to the minimum of the average

mutual information. Typically, this would correspond to a sampling time ofτopt = T/4

whereT is the period of oscillations in the combustion chamber during instability. Typ-

ically, the time period of oscillations at instability is itself an unknown. However, the

detector is robust for various values of sampling interval as long as the consecutive val-

ues are poorly correlated. For example, comparable resultscan be obtained for values of

τopt corresponding to the first zero crossing of the autocorrelation of p′(t). The time pe-

riod corresponding to the dominant frequency in the FFT during stable operation of the

combustor can also be utilized as a suitable measure ofT to obtain the sampling time.
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From the measured signalp′(t) for t = (1, 2, ..., N) andt(i+1) − ti = τopt , translation

variablesqc andrc can be created as follows:

qc(n) =
n
∑

t=1

p′(t)cos(ct) (3.12a)

rc(n) =
n
∑

t=1

p′(t)sin(ct) (3.12b)

wherec ∈ (π/5, 4π/5). The mean square displacement of these translation vari-

ables may then be computed for different values ofc as following:

Mc(n) = lim
N→∞

N
∑

t=1

(

[qc(t + n)− qc(t)]
2 + [rc(t+ n)− rc(t)]

2
)

(3.13)

with n ≪ N . It is seen thatn ≤ ncut wherencut = N/10 yields good results.

The mean square displacement is indicative of the diffusivenature of the translation

variables. If the dynamics is regular, then the mean square displacement is a bounded

function in time and for chaotic dynamics, it scales linearly with time.

A modified mean square displacementDc may be defined to ensure better conver-

gence properties but with the same asymptotic growth rate as:

Dc(n) = Mc(n)− Vosc(c, n) (3.14)

where

Vosc(c, n) = 〈p′(t)〉2 1− cosnc

1− cosc
(3.15)

and

〈p′(t)〉 = lim
N→∞

1

N

N
∑

t=1

p′(t) (3.16)

Hence by defining vectorsξ = (1, 2, ncut) and∆ = (Dc(1), Dc(2), ..., Dc(ncut)),
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the correlationKc given by:

Kc = corr(ξ,∆) (3.17)

which essentially allows one to distinguish between the twotypes of behaviour possible

in such systems.

To ensure robustness of the measure to outliers and spuriousresonances, the median

value ofKc (sayK) may be taken which is obtained for different random values of c.

This value ofK would lie close to one for chaotic signals and close to zero for regular

dynamics. If the system is inherently turbulent, the transition to instability would be

associated with a decrease in the value ofK from one to a value depending on the tur-

bulent intensity, i.e., higher the intensity of turbulenceat instability higher the departure

of K from zero at instability.

Figure 3.4: The results on applying the 0-1 test for chaos on the bluff-body stabilized
backward facing step combustor for signals acquired at various Reynolds
numbers. Whereas the values lie fairly close to one for chaotic combus-
tion which is stable, departure from one indicates the onsetof impending
combustion instability which happens as the Reynolds number is increased.
The results presented are for the entire3s data which brings in some grain-
iness due to amplitude modulations. By setting threshold ata value of say
0.9 for K, operators can be informed of an impending instability so that
appropriate control measures can be taken.
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3.3.1 Chaos in combustion noise

The 0-1 test for chaos was applied on the pressure measurements acquired sequentially

at various Reynolds numbers starting from low amplitude combustion noise to high

amplitude combustion instability. The measureK remains fairly close to one during the

initial stages which indicates that combustion noise is chaotic. The value ofK gradually

starts decreasing as the flow Reynolds numbers are increasedeventually reaching values

close to zero at the onset of instabilities. Since this loss of chaos happens in a smooth

manner, we can use the measureK as a precursor to impending instability. By choosing

a threshold value ofK that corresponds to the initial stages of loss of chaos (say,0.9),

operators get to know well in advance of an impending instability so that appropriate

control action may be taken through modification of control parameters to prevent the

onset. Further, the precursor is an objective measure of proximity of the combustor

to unstable operating regimes since it is independent of thedetails of geometry, fuel

composition and flame stabilization.

A controller was devised succesfully that determines the proximity of combustors to

instability that utilizes the 0-1 test for chaos. Although we used the entire3s data in the

analysis results presented in Fig. 3.4, the test performs robustly even with a sampling

rate as poor as1kHz with 500 samples of data (data acquisition for500ms) for an

instability frequency around250Hz.

Since the measure falls smoothly as the operating conditions approach onset, suit-

able control action may be taken by modifying operational parameters to prevent high

amplitude oscillations. Thus, the stability margins of practical fielded systems can

safely be estimated without encountering instabilities.

3.4 Concluding remarks

Combustion noise was shown to be deterministic by performing the Kaplan-Glass test

for determinism on unsteady pressure data acquired from thebluff-body combustor dif-

ferent combustors operating at turbulent Reynolds numbers. The embedding dimension

for combustion noise was seen to be much lower (d0 < 10) than turbulence which is

high dimensional. This difference can be attributed to the interaction of the acoustic
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field with the turbulent flow-field. Using the 0-1 test for chaos, combustion noise was

further shown to be chaotic, which is in stark contrast with the current description of

the phenomenon where it is often treated as a stochastic background to the dynamics.

In the next chapter, attention will be focused on the intermediate regimes prior to com-

bustion instability—where the measure for chaos (K) displayed a smooth decrease in

value from 1 towards 0—in order that the transition route to combustion instability is

identified. These states lie in between the chaotic regime termed combustion noise and

ordered oscillations termed combustion instability.
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CHAPTER 4

What happens in between chaos and order?

In this chapter, we show that the onset of combustion instability is presaged by oper-

ating conditions that display intermittent bursts of high amplitude periodic oscillations

in pressure, that appear in a near random manner amidst chaotic fluctuations. A mech-

anism is proposed that describes the onset of low frequency combustion instabilities

via the intermittency route, which requires the flow-field tobe at least locally turbulent

in the vicinity of the flame. The repeating patterns in the dynamics are then extracted

using a visualization technique known as a recurrence plot.Using the statistics of the

recurrent states, various measures are constructed that can forewarn an impending in-

stability well before the amplitudes start rising in the combustor. Also, since typical

measures such as the amplitude of oscillations cannot serveas measures of bifurcation

in such systems with varying amplitudes, we also seek to identify suitable bifurcation

measures to study intermittent transitions to instabilityin turbulent combustors. The

performance of these measures are then compared with the existing measures available

in the literature such as the damping rate of the autocorrelation measure of the pressure

signal.

4.1 Intermittency route to combustion instability

In turbulent combustors, the transition to self-sustainedoscillations from regimes of sta-

ble operation can often be triggered due to the unsteadinessin the flow and combustion.

Predicting the amplitude or frequency of such triggered oscillations, or even the stabil-

ity margins of combustors remain yet a challenge for researchers in the field due to the

complicated nature of the dynamics in combustors amongst the flow, heat release and

the chamber acoustics (Zinn and Lieuwen, 2005). An understanding of the universal

features of such transitions is limited and operators oftenrely on heuristic measures to

prevent instability in fielded combustors.



The distributions of the pressure measurements acquired from combustors well

before conditions of instability have a characteristic Gaussian distribution (Lieuwen,

2002) suggestive of dynamics dictated by random processes in these regimes. In chap-

ter 3, it was shown that combustion noise is deterministic chaos and therefore is not

noise in the traditional sense of the word. Pressure signalsacquired during combustion

noise were subjected to determinism tests and were shown to be chaotic. Further, it

was also shown that a loss of chaos which happens as a result oftriggering happens in

a smooth fashion. An objective measureK was defined to capture this loss of chaos

independent of the details of geometry, fuel composition, or flow parameters. However,

the reason for the smooth variation of the precursor was not explained in the study and

requires further elaboration.

Figure 4.1: Intermittent signal obtained from the the bluff-body stabilized backward
facing step combustor (Re = 2.58×104, φ = 0.77). The signal is composed
of high amplitude oscillations interspersed amidst low amplitude aperiodic
fluctuations as seen in the zoomed regions of the signals. Such intermittent
burst oscillations were always observed prior to the onset of instabilities.

The smooth variation of the measure for chaos hinted at the existence of a dynamic

regime different from chaos and limit cycle oscillations. Shown in Fig. 4.1 is a sig-

nal obtained from the combustor at these intermediate conditions between regimes of

unsteady chaotic fluctuations and large amplitude periodicoscillations. The signal dis-

plays bursts of high amplitude oscillations amidst regionsof low amplitude fluctuations.

Such an intermediate regime of intermittent oscillations was observed in all the experi-

ments we performed prior to the transition to combustion instability. Also, such states

were seen to persist in time; they are not transients that eventually transform to periodic

oscillations or combustion noise.
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The present study focusses on establishing that intermittency is a stable dynamical

state in combustors distinct from the regimes classified as stable (chaotic) or unstable

(periodic). Although reports of such possibly intermittent burst states are present in the

literature, their dynamics have not been investigated or characterized in detail. For an

unchoked fuel flow at the injector in a swirl combustor, Honget al. (2008) reported

the presence of pressure oscillations that alternated between a‘noisy period of 200 Hz

fluctuation and a silent period with a small pressure fluctuation’. Arndt et al. (2010)

have observed a transition in the flame dynamics between a state of stable combustion

and self-excited oscillations in a premixed gas turbine model combustor using simulta-

neousOH∗ chemiluminescence,OH∗ PLIF and stereoscopic measurements. Bursts of

pressure oscillations have also been reported close to critical transition to instability in

liquid-propellant rocket engines (Clavinet al., 1994).

An explanation for the burst oscillations was provided in the study by Clavinet al.

(1994) where the erratic behaviour of pressure fluctuationswas incorporated as a mul-

tiplicative noise term in the wave equation. The effect of such a noise term, which

was used to model the effects of turbulence, in the vicinity of a sub- and supercritical

Hopf bifurcation was then explored, and the corresponding probability distribution of

pressure fluctuations were obtained after deriving the amplitude equations for the un-

derlying acoustic system close to criticality. The proposed model highlights the need for

a nonlinear approach in describing the nature of transition. However, it is known that in

addition to modulating the pressure fluctuations, turbulence also brings with it its own

dynamics such as vortex shedding that can have contributions over time scales close

to combustion instability. To bring in the effects of turbulence as a parametric (mul-

tiplicative) noise term is to concede that it is not possibleto describe or quantify the

dynamics brought about by phenomena such as the formation, roll-up, coalescence and

impingement of vortices. Hence, appropriately modelling these deterministic aspects

of the hydrodynamics remains a continuing challenge in the field.

The dynamics of fluctuations in turbulent combustors may be better understood as

a complex interplay amongst two subsystems operating over different length and time

scales. Acoustics operates over time scales determined by the passage time of sound

through the combustion chamber. Interaction due to hydrodynamics on the other hand,

can be spread over multiple orders of temporal magnitude dueto the broad-band nature

of the underlying turbulence. At the same time, unsteady flowphenomena such as
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vortex shedding, roll-up, coalescence, or impingement cangive rise to dynamics over a

narrow frequency band, some of which could lie close to the natural acoustic modes of

the confining combustion chamber. Hydrodynamics thus operates over a broad range of

time scales associated with convection and unsteadiness due to turbulence.

The major contribution to the driving received by the acoustics through combus-

tion—other than those due to direct hydrodynamic or acoustic modulation of the flame

—comes from fuel unmixedness through equivalence ratio perturbations. These equiv-

alence ratio perturbations, which again arise due to acoustic modulation of the feed

system and flow unsteadiness, are seen to influence only the magnitude of heat release

rate fluctuations. Lieuwenet al.(1998) have shown that chemical time scales, being typ-

ically much smaller than flow/acoustic time scales, are unlikely to provide the necessary

phase delay needed for an acoustic –chemical kinetic coupling to sustain low-frequency

instabilities. Hence, it is reasonable to assume fast chemistry and essentially incorpo-

rate the effects of combustion as part of the hydrodynamic and acoustic subsystems.

It should further be noted that such a description does not decouple the dynamics of

acoustics and hydrodynamics; rather it emphasizes a mutualnonlinear coupling of the

two subsystems. A model based on this mechanism will be introduced in Chapter 5.

In modelling these effects, if one were to discount the effects of turbulence or aver-

age out the equations (a mean field description), the bifurcation of the acoustic system

will be seen as a transition from a fixed point solution to a periodic final state—a transi-

tion termed Hopf bifurcation. Such a description which decouples the two subsystems

leaves no room for phenomena such as the intermittent burstsstates observed in the

experiments. The intermittent oscillations can arise if the acoustic subsystem is mod-

ulated by the hydrodynamics over slower time scales (turbulent velocity fluctuations

typically have an increased energy content at lower frequencies), essentially shifting the

dynamics of the acoustic subsystem back and forth across theHopf point. If the mech-

anism proposed above is correct, combustion instability inturbulent combustors must

necessarily happen via a regime of intermittent burst oscillations. Further, the mecha-

nism also requires that such intermittent periodic bursts be absent when the underlying

flow-field is laminar, as there are no possible mechanisms to allow for the required low

frequency, near-random modulation. Such a situation can arise, for instance, in ducted

laminar flames, as long as the flame itself doesn’t become turbulent; or in an electrical

Rijke tube as long as the mean flow is laminar. For such laminartransitions, the r.m.s.
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levels of pressure in the system form a convenient measure that characterizes the onset

of instability. In what follows, we shall describe ways to characterize intermittent burst

oscillations observed in turbulent combustors.

4.1.1 Bifurcation diagrams

Typically, bifurcation diagrams of experimental data are drawn by tracking the peaks in

a measured signal and plotting them as a function of the control parameter. However, the

presence of turbulence shifts the peak amplitude across a range of values even during

combustion instability. One simple way to bypass this issuewould be to count the

number of peaks (N) in the signalφ(j) for a time durationt above a fixed thresholdǫ

which would correspond to acceptable levels of amplitude for the system. IfNtot is the

total number of peaks that happen within that time one can then assign a probability of

the system to attain instability as:

f = N/Ntot (4.1)

The value off is a measure of the proximity of the system to instability. The mea-

sure also makes sense from a dynamical systems perspective as an order parameter; i.e.,

a parameter that measures the amount of order (order in the sense of ordered oscillations

or organized behaviour) in the system (Haken, 1985).

Figure 4.2 shows the value off at variousRe starting from low amplitude com-

bustion noise to instability and back to stable operating regimes at two different fuel

flow rates. The threshold was set at500Pa that corresponds to the levels of pressure

fluctuations in the system during stable regimes of operation. The values off vary

smoothly as the control parameter (Re) traverses regimes of stable operation towards

combustion instability. This is because of the presence of an intermediate intermittent

regime in which the pressure signals occasionally cross thethreshold and leads to in-

creased values off . These intermittent excursions last longer in time as flow conditions

approach combustion instability and finally saturates to 1 as instability is reached, when

the dynamics becomes dominantly periodic. These values off thus serve as an appro-

priate measure—a measure of the order in the signal—to draw the bifurcation diagram

in systems exhibiting widely varying amplitudes in the signals.
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Figure 4.2: Bifurcation diagram obtained through normalized burst count (f ) for the
transition from chaotic combustion noise to high amplitudecombustion in-
stability (a)ṁf = 0.55g/s, (b) ṁf = 0.59g/s. The shape of the forward
and return trajectories resembles a sigmoid (S-shaped) curve. The threshold
was set at500Pa.

The bifurcation diagrams further enable us to infer the nature of criticality of the

bifurcation of the acoustic subsystem that leads to combustion instability in both the

configurations. A hysteresis is clearly visible in this new bifurcation diagram (Fig. 4.2).

The nature of the graphs were found to be qualitatively similar on shifting the threshold

a few tens of Pascals on either side although there is an associated quantitative change

in the probability measuref . Hence, it is to be concluded that the bifurcation diagram is

useful only to infer the qualitative nature of the transitions at the onset of instability. The

bifurcation diagrams show that the presence of the bluff-body causes the bifurcation of

the acoustic subsystem to be subcritical.

4.1.2 Precursors to combustion instability

Although bifurcation diagrams can be drawn by computing theprobability that the

peaks in a measured signal exceed the levels of noise in the combustor, they cannot be

used to determine the proximity of the system to an impendinginstability sufficiently in

advance. This is because the measuref starts growing only when the amplitude levels

in the combustor grow, which can in turn be conveniently be measured by computing

the r.m.s. levels of pressure fluctuations in the combustor.

Lieuwen (2005) has used the damping rate of the autocorrelation to predetermine

the stability margin of combustors. The transition point was identified as that operating

condition at which the damping of the autocorrelation of measured signals become zero.
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After computing the autocorrelation of the pressure signal, a Hilbert transform was

applied on the autocorrelation to obtain the variation of the amplitude and phase of

the autocorrelation. The effective damping rate was then obtained as the slope of the

logarithmic decrement of the amplitude of the autocorrelation.

Figure 4.3: Variation of the sound levels in the combustor asmeasured by (a) the r.m.s.
values of unsteady pressure signal (p′rms) with Re (ṁf = 0.59g/s). (b) The
variation of the precursor measure based on the effective damping rate of
the autocorrelation of the pressure time traces.

Shown in Fig. 4.3(b) is the variation of the damping rate of the autocorrelation of

the pressure time traces acquired for various values of flow Reynolds number starting

from regimes of combustion noise towards combustion instability. The damping rate

was computed for0.04s (roughly 10 acoustic cycles at instability), by performinga

linear regression. Unlike in Lieuwen (2005), a band pass filter was not applied to the

input pressure signals. To compare the performance of this precursor measure, the

variation of the r.m.s. values of the pressure time series for the various conditions are

also shown in Fig. 4.3(a). To show the convergence of the measures, the damping rates

and r.m.s. values computed for increasing intervals of dataacquisition are also shown.

The regression errors associated with the straight line fit for the damping rates have not

been shown for the sake of clarity.

It is seen that the precursor based on damping rates perform satisfactorily and show

linear dependencies only after the amplitude starts risingin the combustor. In other

words, they were seen to have a performance comparable to themeasuref used to

construct the bifurcation diagrams. Further, it is seen that the decay rates fluctuate

wildly and converge slowly, for regimes prior to the sharp amplitude rise. The precur-

sor based on decay rates are thus seen to perform inadequately and show non-monotonic

dependencies during regimes of combustion noise and the start of intermittency. This
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is expected since an ‘effective damping rate’—which is an average measure based on

a linear analysis—cannot be defined for intermittent or chaotic signals that entail non-

linear, time-localized dynamics. In the next subsection, we introduce measures that can

characterize the intermittency in a measured signal and compare the capability of these

measures with the traditional methods as precursors to combustion instability.

4.2 Recurrence quantification

4.2.1 Recurrence plots

The temporal features of the dynamics of a measured signal can be characterized by

tracking the regularity of the trajectories using recurrence plots. Recurrence is a fun-

damental property of dynamical systems and recurrence plots allow one to visually

identify the times at which the trajectory of the system visits roughly the same area in

the phase space (Marwanet al., 2007). The technique requires reconstruction of the

mathematical phase space of evolution of the pressure fluctuations, the procedure for

which is outlined in Chapter 3. In reconstructing an appropriate phase space, a knowl-

edge of the appropriate embedding dimensiond0 and the optimum time lagτopt that is

used to generate the delay vectors from the measured pressure time series (of length

N0) is necessary. A recurrence plot is constructed by computing the pairwise distances

between points in the phase space. Then, a matrix of recurrences may be obtained as:

Rij = Θ(ǫ− ||p′

i
− p′

j
||) i, j = 1, 2, ..., N0 − d0τopt (4.2)

whereΘ is the Heaviside step function andǫ is a threshold or the upper limit of the

distance between a pair of points in the phase space to consider them as close or recur-

rent. The indices represent the various time instances whenthe distances are computed

and the boldface represents the vector of coordinates in thephase space. The recur-

rence matrix is a symmetric matrix composed of zeros and onesand a recurrence plot

is the 2D representation of this matrix as the trajectories evolve in time. The ones in

the recurrence plot are marked with black points and represent those time instants when
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the pairwise distances are less than the thresholdǫ. White points in the recurrence plot

correspond to the zeros in the recurrence plot and correspond to those instants when the

pairwise distances exceed the threshold.

Figure 4.4: Recurrence plots and the corresponding unsteady pressure signals acquired
during combustion noise (top row,Re = 1.83 × 104), intermediate inter-
mittent regime (middle row,Re = 2.50 × 104) and combustion instability
(bottom row,Re = 2.78 × 104) from the bluff-body stabilized combustor.
The threshold for the recurrence plot was chosen to beǫ = λ/5 whereλ is
the size of the attractor, defined as the maximum distance between pairs of
points in the phase space. The black patches in the intermittent and chaotic
oscillations correspond to regions of low amplitude pressure fluctuations
relative toλ. The distance between the diagonal lines in (c) correspondsto
the time period of oscillation during instability.

Figure 4.4 shows the recurrence plots drawn for the pressuresignals acquired during

(i) combustion noise, (ii) intermittent regime and (iii) combustion instability. The data

was under-sampled to a frequencyFs of 2.5kHz and was embedded in a phase space

of d0 = 10 with an embedding delayτopt = 1ms. The under-sampling was done to

reduce the computational cost involved in obtaining the recurrence matrix. The recur-

rence plot for the chaotic combustion noise is seen to be grainy (Fig. 4.4(a)). This is to

be expected since the dynamics is chaotic with little repeatability in the patterns. On
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the other hand, the recurrence plot during combustion instability displays a pattern of

diagonal lines indicating high repeatability (recurrence) in the dynamics (Fig. 4.4(c)).

The time duration of the signal was chosen to be0.1s to highlight the diagonal lines

in the recurrence plot which would otherwise not be visible.The separation between

the diagonal lines gives the fundamental time period of oscillation during combustion

instability. The intermediate regime has a recurrence plotthat consists of perforated

black patches amidst white patches (Fig. 4.4(b)). The blackpatches represent the times

when the system exhibits low amplitude chaotic oscillations and white patches repre-

sent the higher amplitude periodic bursts. This is a patterntypical of intermittent burst

oscillations. The recurrence plots thus help visually identify the route to instability in

turbulent combustors. The transition proceeds from chaos (combustion noise) to order

(combustion instability) through an intermediate intermittent regime.

4.2.2 Precursors using recurrence quantification

Several statistical measures may be constructed through a recurrence quantification

analysis of a measured signal that could serve as useful measures of intermittent os-

cillations. These measures can further be used as precursors to an impending instability

because they vary in a smooth fashion as the operating conditions traverse the inter-

mittent regime into conditions of combustion instability.By tracking the probability

distribution of black points (or white points) in such plots, measures can be constructed

that can distinguish amongst the dynamically different regimes of the combustor, the

procedure for which is outlined in the next subsection.

In constructing the recurrence plots of Fig. 4.4, the threshold ǫ was a relative mea-

sure as it depended on the size of the attractor at that particular operating condition

(Reynolds number). This enables one to understand the qualitative changes in the un-

derlying dynamics in phase space. In order to obtain quantifiable precursors across dif-

ferent values of Reynolds number, the threshold needs to be held fixed at some suitable

value. Fixing the threshold allows one to compare the valuesof the various statistical

measures obtained using recurrence quantification as the control parameter is varied. In

what follows, the fixed threshold value (sayǫ0) was chosen to be slightly higher than

the size of the attractor obtained at the lowest operationalReynolds number. It should

be mentioned that the thresholds sizes are indicative of theEuclidean distances between
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points in the phase space (∼
√
d0|p′|), and should not be confused with the amplitude

levels in the combustor (|p′|).

A number of suitable markers that foretell an impending instability may be con-

structed by counting the number of black points in the recurrence plot. The density of

black points in a recurrence plot measures the recurrence rate in the dynamics of the

system and can be obtained as:

RR =
1

N2
1

N1
∑

i,j=1

Rij (4.3)

whereN1 = N0 − d0τoptFs. Rij is one for a black point and zero for a white point. The

signal was sampled at a frequencyFs of 2.5kHz for 3s to give a value ofN0 of 7500 and

was embedded in a phase space ofd0 = 10 with an embedding delayτopt = 1ms. This

density of points in the recurrence plot is seen to decrease on the approach of instability

(Fig. 4.5(a)). This is expected since the number of black points in the recurrence plot

would come down as instability is reached because the pairwise distances now exceed

the threshold more often.

This decrease in the density of black points should then correspond to a decrease

in the time spent by the system in aperiodic states which is measured by a quantity

τ0 (normalized with the time duration of evolution of the trajectory in phase space),

defined as:

τ0 =
1

N1

N1
∑

v=1

vP (v)

N1
∑

v=1

P (v)

(4.4)

with P (v) being the frequency distribution of the vertical (horizontal) black lines of

lengthv in the recurrence plot for a signal sampled at a frequencyFs. The quantity

τ0 also quantifies how long the system remains in a particular dynamical state (in this

case, chaotic fluctuations). Hence we expect this quantity to tend towards 0 as the

system transitions completely into periodic oscillations(see Fig. 4.5(b)). The value of

τ0 will be equal to one at conditions of combustion noise.

Finally, the Shannon entropys of the signal can be obtained from the recurrence
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Figure 4.5: Performance of the statistical measures of intermittency obtained through
recurrence quantification for pressure time traces sampledat 2.5kHz for
3s. The measures plotted correspond to (a) the recurrence rateof dynamics
(RR) which measure the density of points in the recurrence plot,(b) the
average passage time spent by the dynamics in aperiodic fluctuations (τ0),
and (c) the entropy (s) of the diagonal length distribution. The threshold
was chosen asǫ0,bluff = 1900Pa which are close to the size of the attractor
(λbluff = 1955.5Pa) in the underlying phase space at the lowest measured
Re.

plot using the expression:

s =

N1
∑

l=1

p(l)logp(l) (4.5)

where the probability that a diagonal line has lengthl, p(l) is given by:

p(l) =
P (l)

N1
∑

l=1

P (l)

(4.6)

whereP (l) is the frequency distribution of the black diagonal lines oflengthl. Shan-

non entropy is a measure of the amount of order (disorder) in the system. We see

that the Shannon entropy of the signal (s) tends towards zero at the onset of instability

(Fig. 4.5(c)). A decrease in entropy indicates that the system is approaching a state of
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regularity or there is an emergence of order out of chaos. This makes sense intuitively

as we know that the recurrence plots for a periodic signal consists of black, parallel

diagonal lines and that the oscillations correspond to an ordered state. Hence, we nat-

urally expect the entropy to come down as operating conditions approach combustion

instability.

The relative merits of these measures as early warning signals to instability were

gauged by comparing their performance with the r.m.s. values of the pressure time

series (Fig. 4.6(a)). The convergence of the measures with an increasing duration of data

acquisition was also inspected to ensure that the precisionof the measured quantities are

increased. The converged measure represents its average value at the flow condition, as

an ensemble average of the measure over many realizations should tend to an average

measure obtained over large time durations. Since we do not have multiple realizations

(pressure time traces) at the same operating condition, we have adopted this measure

of convergence to infer that uncertainties in estimation ofthese average measures have

been minimized.

The measureRR is seen to have inverse relationship withp′rms and has good con-

vergence as the time duration is increased fromT = 0.5s to T = 3s. However, we see

that the variation inτ0 ands starts much earlier than the regimes when amplitudes start

rising in the combustor as indicated byp′rms. These measures vary sooner as they quan-

tify the time-localized statistics of the burst oscillation; for instanceτ0 measures the

average duration between two successive bursts. The variability in the measures with

the threshold sizeǫ0 is shown in Fig. 4.6. Among the precursor measures,τ0 shows

the largest variation asǫ0 is varied. However, the overall qualitative features are pre-

served even when the threshold is varied. These results indicate that a knowledge of the

amplitude levels in the combustor during stable operation is desirable for the optimum

performance of the precursors.

Although it is possible to define additional quantifiable precursors (see Marwan

et al. (2002) for a detailed list of statistical measures constructed using recurrence

plots), our purpose in this section was merely to illustratethe power of recurrence quan-

tification in forewarning impending combustion instability. The reason why these pre-

cursors work is due to the presence of an intermittent regimeof burst oscillations amidst

chaotic combustion noise and ordered periodic oscillations. More generally, since these
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Figure 4.6: Variability in the statistical measures of intermittency for different threshold
sizesǫ0 for the pressure time traces sampled at2.5kHz for 3s at various
Re. The measures plotted correspond to (a) the recurrence rateof dynamics
(RR) which measure the density of points in the recurrence plot,(b) the
average passage time spent by the dynamics in aperiodic fluctuations (τ0),
and (c) the entropy (s) of the diagonal length distribution.

measures only distinguish the passage of dynamics from a chaotic to an ordered state

through intermittency, such precursors can possibly be used as early warning signals to

an impending instability in a variety of turbulent flow systems encountering periodic

oscillations.

4.3 Concluding remarks

The transition from combustion noise to combustion instability in turbulent combustors

was always seen to be presaged by an intermittent regime composed of bursts of high-

amplitude periodic pressure oscillations amidst regions of aperiodic, low-amplitude

fluctuations. This gives an altogether different picture from what one would expect

from a mean-field description of the phenomenon, wherein thetransition happens from

a fixed point to a limit cycle via a Hopf bifurcation. A mechanism was proposed which

necessitates that on changing a system parameter, the transition to instability in com-
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bustors must happen via the intermittent route, provided the underlying flow-field is

turbulent.

A smooth and continuous measure to plot bifurcation diagrams for parameter vari-

ation in combustors with a turbulent flow-field can be obtained by counting the number

of peaks in a measured signal above a predefined threshold. Hysteresis was observed

for variations in the Reynolds number using this measure. Further, precursors to an

impending instability can be obtained through recurrence quantification that can warn

an operator of fielded systems sufficiently in advance, so that appropriate control action

may be taken to prevent detrimental oscillations. These precursors are seen to detect

and warn the onset of an oscillatory regime well in advance ofother measures based on

the sound levels in the combustor and effective damping rates. These measures act as

effective precursors because they act as quantifiers of the intermittency in a measured

signal.

It is quite possible that combustors in fielded systems can tolerate limit cycle oscilla-

tions, provided the amplitudes are within a reasonable range. The passive control meth-

ods available in the literature work by increasing the damping, or by modifying some

design or flow features to suppress the instability amplitudes, and possibly improve sta-

bility margins. Hence, they fall under a different class of methods complementary to

what is proposed herein. The methods described in this chapter warn the operator that

oscillations are about to set in for further variations in anoperating parameter. Armed

with this knowledge, the decision lies with the operator whether to let the operating

conditions cross over to regimes of limit cycle operation.

At present, there are no reliable measures to pre-determinethe amplitudes of os-

cillation at the onset of instability in combustors. Employing passive control measures

requires a knowledge of the amount of damping required to suppress the instability am-

plitudes when the oscillations set in whilst ensuring that the performance is not com-

promised. The technique presented here provide the operator with an alternative choice,

one which is aimed at avoiding a region of unstable operationaltogether.

In the next chapter, we shall discuss a simple phenomenological model that de-

scribes the intermittent features seen in experiments based on the proposed mechanism.
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CHAPTER 5

A phenomenological model for intermittency

Based on the insights gained from the experiments, a phenomenological model is in-

troduced in this chapter to describe the intermittency route to combustion instability.

It is adapted from the vortex impingement model of Matveev and Culick (2003). In-

termittency arises through a variability in the travel times of the vortices to reach and

impact the bluff-body starting from the dump plane. The chapter ends with a qualitative

comparison of the precursor measures obtained from the model with the experiments.

5.1 Inputs from experiments

Typically, for the kinds of flow-fields established in combustors, the instability becomes

hydrodynamically coupled (Poinsotet al., 1987; Yuet al., 1991). The formation of

large-scale coherent vortices at the onset of combustion instability has been reported by

a number of authors in the literature (Parkeret al., 1979; Pitz and Daily, 1983; Hegde

et al., 1983; Poinsotet al., 1987; Yuet al., 1991). Shown in Fig. 5.1 are a sequence of

line-of-sight integrated instantaneous flame images acquired during combustion insta-

bility. The image sequence shows a vortex forming in the dumpplane of the combustor

during the compression phase, growing as it convects downstream and impinging on the

bluff-body; resulting in vigorous mixing and heat release (Schadow and Gutmark, 1992;

Coats, 1996). The flame is then pushed back towards the dump plane in the rarefaction

phase of the pressure signal and the cycle renews.

The spectra of pressure oscillations as well as that of the intensity signal as measured

by a PMT during combustion instability reveal a sharp frequency at the subharmonic of

the instability frequency (Fig. 5.2). The dominant frequency is atfa = 244.9Hz and the

subharmonic is atfv = 123.1Hz. The spectral bin size was∆f = 0.12Hz. The mean

temperature of the gas near the wall as measured by a thermocouple located50mm

from the backward facing step wasT0 = (1196± 30)K; which gives the quarter-wave

mode at(247.6 ± 4)Hz. The sub-harmonic frequency is thus probably hydrodynamic



Figure 5.1: A sequence of line-of-sight integrated, instantaneousCH∗ chemilumines-
cence acquired during combustion instability (Re = 3.17× 104,φ = 0.62).
The time delay between successive images is1ms. The outline of the bluff-
body is provided for the ease of visualization.

and lies roughly at half the frequency corresponding to the quarter-wave mode at the

operating condition (Re = 3.17× 104, φ = 0.62).

Figure 5.2: Evidence for sub-harmonic forcing during combustion instability. (a)
The pressure signal and (b) the corresponding amplitude spectra obtained
through a FFT (Re = 3.17 × 104, φ = 0.62). (c) The spectra of theCH∗

chemiluminescence intensity at the same operating condition near the bluff-
body.

If the mechanism proposed in Chapter 4 is correct, the presence of intermittent

burst states are also a result of the coupling of the hydrodynamics with the acoustics.

The model that we use to describe intermittency must therefore necessarily incorporate

the coupled two-way interactions amongst the hydrodynamics and the acoustics of the
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confinement.

5.2 Model description

We consider a bluff-body stabilized backward facing step combustor of lengthL oper-

ating at turbulent Reynolds numbers with an incoming flow velocity of U0 (Fig. 5.3).

Vortices are formed at the dump plane that carry the flame and convect downstream to

impinge on the bluff-body located at a distanceLc from the backward facing step of

step heightd. This impingement leads to intense fine scale mixing and heatrelease.

When the heat release rate by vortex impingement on the bluff-body happens in phase

with the pressure fluctuations inside the combustion chamber, the pressure fluctuations

are amplified. The acoustic field then in turn modifies the velocity at the dump plane

resulting in a periodic heat release rate through vortex impingement. This creates a

positive feedback loop between the hydrodynamics and the confinement acoustics and

the oscillations become self-sustained, resulting in combustion instability.

Figure 5.3: Schematic of the bluff-body stabilized combustor. The length of the com-
bustor isL andLc refers to the location of the bluff-body in the combustion
chamber. The reactants flow into the combustor through the burner at a
mean flow velocityU0 andd is the height of the backward facing step.

The typical Mach numbers in combustion chambers are low due to the high tem-

peratures. Hence, the contributions of mean flow velocity can safely be ignored in the

governing equations for the acoustic oscillations which after neglecting temperature
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gradients and viscous effects may be written as (Annaswamyet al., 1997):

∂u′

∂t
+

1

ρ0

∂p′

∂x
= 0, (5.1a)

∂p′

∂t
+ γp0

∂u′

∂x
= (γ − 1)Q̇ (5.1b)

with the heat release ratėQ modelled as in (Matveev and Culick, 2003):

Q̇ = β
∑

j

Γjδ(t− tj)δ(x− Lc) (5.2)

Heretj refers to the instance of impingement of thejth vortex that has a circula-

tion Γj . The termβ is a suitable coefficient that relates the vortex impingement to the

heat release rate. Since the wavelength of sound propagation is comparable to the com-

bustion chamber length, the acoustic field can be treated as one-dimensional and the

geometry is approximated as a closed-open duct.

The pressure and the velocity fluctuations inside the duct can then be formally ex-

panded in terms of basis functions (Zinn and Lores, 1971) that satisfy the boundary

conditions as follows:

p′(x, t) = −p0

N
∑

n=1

η̇n(t)

ωn
cosknx, (5.3a)

u′(x, t) =
c0
γ

N
∑

n=1

ηn(t)sinknx (5.3b)

with p0 = ρ0c
2
0/γ, kn = (2n−1)π/2L andωn = c0kn. These expansions satisfy Eq. (1)

and the boundary conditions (u′(x = 0) = 0 andp′(x = L) = 0) trivially. Substituting

Eq. (4) into Eq. (2) and performing a projection over the basis functions (Balasubrama-

nian and Sujith, 2008b) results in the following set of second-order ordinary differential

equations.
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η̈n + ξnη̇n + ω2
nηn = cωncosknLc

∑

j

Γjδ(t− tj) (5.4)

wherec = −2( − 1)β/Lp0. In the equation, the damping termξnη̇n was introduced to

model the acoustic losses with the mode dependent damping defined as:

ξn
ξ1

=
ωn

ω1
= (2n− 1)2 (5.5)

whereξ1 is the damping rate of the combustion chamber which can be measured exper-

imentally. The damping termξn represents the end losses from the chamber (Sterling

and Zukoski, 1991). The jump conditions are obtained by integrating Eq. (5) once and

imposing continuity of the solution. These jump conditionsfor acoustics at the moment

of vortex impingement may be written as:

η
t+
j
n = η

t−
j
n , (5.6a)

η̇n
t+
j = η̇n

t−
j + cΓjωncosknLc (5.6b)

The convection of the vortices from the dump plane are modelled as:

dxj

dt
= αU0 + u′(x, t) (5.7)

Here,α is a coefficient that describes the fraction of the mean velocity (U0) at which

the vortices convect in the combustion chamber. To account for the variations in the

size of the vortices and the accompanying differences in their convection velocities,

a Gaussian distributionN (α0, σα) is assigned toα centered around the fractionα0

corresponding to the mean convection velocities in the following manner:

α = α0 + σαφ (5.8)

whereφ = N (0, 1), andσα is the standard deviation. The choice of a Gaussian distribu-

tion is motivated by observations on turbulent velocity measurements. The distribution
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of α thus represents a distribution of the vortex sizes or of the vortex convection ve-

locities and can be thought of as modelling the broadband nature of turbulence. The

presence of the damping term ensures that the contributionsdue to turbulence are more

dominant at low frequencies as observed in turbulent velocity measurements. Follow-

ing (Matveev and Culick, 2003) the variation in circulationat the dump plane is given

by the expression:

dΓ

dt
=

u2
sep

2
(5.9)

with usep = U0 + u′(0, t). When this value of circulation exceeds a critical value

Γcrit = usepd/2St, a new vortex is formed at the step (Matveev and Culick, 2003)which

then convects downstream according to Eq. 5.7. Here,St is the Strouhal number for the

backward facing step of step heightd. It is assumed that the circulation is conserved as

the vortex convects downstream and impinges on the bluff-body.

5.3 Preliminary results

Simulations were performed using the model to obtain a qualitative match with the phe-

nomena obtained in combustors operating at turbulent flow conditions. The parameters,

where possible, were chosen to match those corresponding tothe experiments described

in the previous chapters. The value of the parameterα was chosen as 0.2 withσα = 0.05

which corresponds to a turbulent intensity of5% at the dump plane. The Strouhal num-

berSt was chosen as 0.29 based on experimental observations in backward facing step

geometries (Bhattacharjeeet al., 1986). The value of the jump coefficientc was cho-

sen as6 × 10−3 to obtain a qualitative match between the pressure amplitudes from

the simulation and experiments. The damping coefficientc1 = 29s−1 was obtained by

measuring the decay rates of pressure oscillations in the experiments when the fuel was

cut-off. Equations were integrated using a4th order Runge-Kutta scheme with a time

stepdt = 5 × 10−5 for 100001 time steps and convergence was ensured by choosing

N = 10 basis functions. The acoustic pressure was measured atx = 0.09 in line with

the position of the transducer used in the experiments (90mm from the backward facing

step).
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Figure 5.4: Results from the model for (a)U0 = 8.0m/s, (b) U0 = 8.4m/s, (c)
U0 = 8.7m/s and (d)U0 = 9.0m/s. As the flow velocity increases, the
dynamics transition from intermittent regime towards self-sustained com-
bustion instability. The duration of such intermittent bursts increase as the
system approaches instability. The transient response is also visible in the
signal. The values of the various parameters arec0 = 700m/s, γ = 1.4,
Lc = 0.05, L = 0.7, d = 0.025, c1 = 29s−1. The initial conditions corre-
spond toη1 = 0.001, ηi1 = 0, i̇ = 0 with N = 10 basis functions.

The results from the model for various flow velocities leading up to combustion in-

stability are shown in Fig. 5.4. As the flow velocity increases, the pressure signals start

displaying intermittent bursts as seen in the experiments (Fig. 5.4(b,c)). The duration

of these periodic bursts increases with increases in flow velocity until eventually the

system transitions to large-amplitude oscillations. The results are in qualitative agree-

ment with the experimental results. These bursts of periodic oscillations emerge from

the background fluctuations in a near-random manner. This was seen to correspond di-

rectly to the parameterσα in the model. In other words, small variations in the size of

the vortices lead to small variations in their convection velocities. Therefore, these vor-

tices impinge on the bluff-body at slightly different times. It is this variation that results

in the almost random appearance of these bursts in the pressure signals. The modulation

in the amplitudes of pressure oscillations at combustion instability also results from the

small variations in vortex impingement times.

The amplitude spectrum of the pressure oscillations obtained from the model prior

54



to instability is shown in Fig. 5.5(a). The spectrum revealsthe presence of a frequency

around250Hz. This is the acoustic frequency of the duct (fa) as it remains invari-

ant with flow velocities (see Fig. 5.5(b)). The spectra also show the presence of an-

other dominant frequency (fv) whose higher harmonic slowly approaches the acoustic

frequency and finally locks-on to the acoustics. This sub-harmonic frequency corre-

sponds to the frequency of vortex impingement on the bluff-body. Since the frequency

of impingement varies linearly with flow velocity (Fig. 5.5b), when the flow velocity

U0 is such that the vortex impingement happens at the sub-harmonic frequency of the

fundamental acoustic frequency, the oscillations become self-sustained and the ampli-

tudes rise sharply. The presence of this sub-harmonic frequency due to hydrodynamics

around125Hz is clearly visible in the experimental data shown in Fig. 5.2(b,c). The

peak seen at500Hz in the experiments is absent in the simulation (Fig. 5.5(a))as we

have assumed a closed-open geometry for the combustor. However, the experimental

mode shape obtained from the combustor using pressure transducers mounted along

the length of the combustion chamber is close to a quarter-wave mode and hence we

approximate the solution using quarter-wave modes.

Figure 5.5: (a) Amplitude spectrum of the signals forU0 = 8.0m/s. (b) As the mean
flow velocity increases, the hydrodynamic frequencyf2v approach the fun-
damental acoustic frequency (fa ∼ 250Hz). At the onset of instability,
the acoustic oscillator receives a forcing from the hydrodynamic oscillator
at its sub-harmonic frequency (fv ∼ 125Hz) and there is a flow acoustic
lock-on inside the combustor which results in large amplitude combustion
instability.

The intermittent oscillations will not be observed if we setσα = 0. In this case,

the effects of vortex impingement are either stabilizing ordestabilizing depending on

the frequency of impingement. When the vortex convection velocities are distributed
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(σα 6= 0), occasionally the convection velocity of a vortex is such that its impingement

frequency is close to the sub-harmonic of the fundamental acoustic frequency. This

results in a favourable phase relationship between the heatreleased through impinge-

ment and the acoustic pressure oscillations and leads to theformation of an intermittent

burst in the signal. The distribution forα was chosen as a Gaussian to emulate the

near-random appearance of bursts in experimental data. Such distributions ofα may

be refined using PIV measurements to obtain better quantitative comparisons. The in-

termittent feature in the dynamics was seen to be robust to different choices of the

parameterα.

Systematic variation of operating conditions for experiments on bluff-body and

backward-facing step combustors in turbulent flow-fields from stable to unstable op-

eration indicate the presence of a lock-on phenomena between the vortex shedding and

duct acoustics, resulting in the excitation of high-amplitude discrete tones at the onset

of combustion instability (Chakravarthyet al., 2007b,a). It is also known from mea-

surements of the response of flames to flow disturbances, thatflames are capable of

driving the subharmonics of the fundamental acoustic frequency—in addition to the

fundamental (B. D. Bellows, 2006). Such subharmonic peaks were also observed in

the spectra of theCH∗ emissions measured by a photomultiplier (Fig. 5.2). The model

thus introduces a simple approach to interpreting the dynamics observed in combustors

operating in a turbulent flow-field.

5.4 Precursors to combustion instability

In the previous chapter, several precursors to an impendingcombustion instability were

defined by quantifying the intermittency in experimental pressure measurements. One

of these precursors involved tracking repeating patterns or recurrences in the dynamics

of pressure oscillations. These recurrences are quantifiedusing binary distance matrices

depending on whether the distances between pairs of points in the reconstructed phase

space (of dimensiond and embedding delayτ ) exceed a fixed threshold (Marwanet al.,

2007). A plot of this matrixRij(N×N) on a 2D plane is called a recurrence plot (Fig. 5.6)

wherein the black points correspond to those time instants when the distances fall below

the threshold. Precursors are constructed by defining measures based on the statistical
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properties of the black points in the recurrence plots.

Figure 5.6: Recurrence plots from the model for the pressuresignals at (a)U0 =
7.9m/s, (b)U0 = 8.4m/s, and (c)U0 = 9.0m/s. The threshold was defined
asǫ = λ/5 whereλ is the size of the underlying attractor in phase space
defined as the maximum distance between pairs of points in phase space at
the flow condition. The signal was embedded in a dimensiond0 = 8 with
embedding delayτopt = 1ms.

Shown in Fig. 5.6 are the recurrence plots obtained from the model corresponding

to chaotic, intermittent and periodic dynamics respectively. The recurrence plot during

the chaotic regime is grainy whereas during instability they are composed of parallel

diagonal lines as expected and observed in experiments. Therecurrence plot during

intermittency also compares well with the experiments and consists of black rectangu-

lar patches that appear in a near-random fashion. The precursors defined earlier were

computed for the various flow velocities from stable operation leading to combustion

instability and the results are shown in Fig. 5.7. They are seen to forewarn the transition

to instability well before the amplitudes start to rise (Fig. 5.7(a)) just as in experiments.

An alternate way of quantifying the intermittency is by measuring the loss of chaos

in the measured pressure signals. Shown in Fig. 5.8 are the results from the model on

applying the 0-1 test for chaos (Gottwald and Melbourne, 2004) on pressure signals

obtained for various inlet flow velocities. The model shows that the no lock-in regime

is chaotic and that there is a gradual loss of this chaos as operating conditions approach

instability. The results obtained from the model compare well with the observed trend

in experiments which show that the regime of stable operation classified as combustion

noise is deterministic and chaotic. The model is thus seen tocapture the mechanisms of

onset of combustion instability; intermittency presages combustion instability in a com-

bustor with a turbulent flow-field and quantifying this intermittency enables precursors

to be constructed that forewarn instability.
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Figure 5.7: Variation of (a) the pressure amplitude levels (prms) and precursors to com-
bustion instability obtained from the model through statistical recurrence
quantification: (b) The recurrence rateRR, (c) entropys and, (d) average
passage timeτp. These precursors fall at independent rates well in advance
of the actual transition to instability. The threshold was kept fixed at a value
ǫ = 3000. The behaviour of these precursors are comparable to those ob-
tained from the experimental data from the bluff-body combustor.

5.5 Concluding remarks

A simple phenomenological model was described to understand the onset of instability

in combustors operating in a turbulent flow environment. Thephenomenon of inter-

mittent burst oscillations observed in such combustors andthe subsequent transition to

combustion instability was qualitatively reproduced using the model. The instability

can be understood as a lock-on mechanism or synchronizationbetween the acoustic os-

cillator and the hydrodynamic oscillator. Comparison of the spectra obtained from the

experiments and the model shows that a subharmonic forcing of the acoustic field in the

combustion chamber by the hydrodynamics is responsible forcombustion instability.

The various techniques that forewarn combustion instability from experimental mea-

surements were applied to the model to understand the effectiveness of the model in
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Figure 5.8: Variation of the measure based on the 0-1 test forchaos (K) when applied
to pressure fluctuations from the model, as the mean flow velocities are
increased (7.9 − 9.0m/s) towards combustion instability. The results are
comparable with the experimental data.

describing the physics of precursors. It was seen that the time signals obtained from the

model show the loss of chaos seen in experiments and by quantifying intermittency is

able to warn the onset of combustion instability well in advance.
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CHAPTER 6

Instability as a loss of multifractality

As we have seen so far, the dynamic processes happening inside a combustion chamber

involve the coupled nonlinear processes which cannot be described by simple linear

techniques. In this chapter, we shall introduce the framework of fractals and multi-

fractals in order to tackle this complexity. Using a technique known as multifractal

detrended fluctuation analysis, the deviations of the central moments of measured fluc-

tuations with time are computed, which can directly be related to the fractal dimension

of the time signal. It is shown that combustion noise is multifractal and that the onset

of combustion instability results in a loss of this multifractality. The rate of variation

of central moments decrease gradually towards zero as instability is approached, which

can be used as yet another early warning signal to impending combustion instability.

6.1 Background

The term ‘fractal’ is used to describe objects that have a fractional dimension (Man-

delbrot 1982). Whereas classical Euclidean geometry dealswith smooth objects that

have integer dimensions, structures in nature often tend tobe fractals because they are

wrinkly at all levels of magnification. Measures such as length, area or volume can-

not be defined for such objects since they depend on the scale of measurement. For

instance, the length of a fractal curve increases when the ruler is made smaller because

additional details are now revealed. A logarithmic plot of the measured length of the

curve against the length of the ruler for such a curve would then show an inverse power-

law; i.e., a straight line with a negative slope. This slope,which is a number between

one and two, is referred to as the ‘fractal dimension’ of the curve. Thus, we see that

such curves occupy more space than a straight line which scales as the length of the

ruler, but less space than a square which scales as the squareof the length of the ruler.

The concept of fractals can also be used to describe complex dynamics that results

in fluctuations spread over multiple orders of temporal magnitude. A fractal process is



characterized by a broad-band power spectrum with an inverse power-law, known more

popularly as the1/f spectrum (Montroll and Schlesinger, 1982; Schlesinger, 1987)

since there is here an inverse relationship between frequency and power. Similar to a

fractal curve, a fractal time signal also has a dimension between one and two. A frac-

tal time series also displays a property known as ‘scale invariance’, which means that

features of the signal look the same on many different scalesof observation (seconds,

minutes etc.). Mathematically, for a fractal time signal,p(ct) = p(t)/cH for some scal-

ing c and a constantH. Scale invariance thus relates the time series across multiple

time scales. Such a dependence on multiple time scales results in a broad profile of

responses in the amplitude spectrum representative of details that are present at these

time scales. On the contrary, if the process can adequately be represented in terms of

one or a few discrete time scales, then the signal would have an amplitude spectrum

with discrete, narrow peaks. In the next subsection, we willshow how the presence of

fractality is related to the memory of a time signal.

6.1.1 Statistical description of a time signal

Statistical analysis of time signals involve obtaining thedistribution of their fluctuations

(Gaussian, Poisson, Levy etc.) or representing this distribution in terms of representa-

tive measures computed around the most likely measurement value (central moments).

Fluctuations that are fractals, but appear noise-like, differ from noise in that they do

not satisfy the statistics of classical random variables. Whereas the central moments

of a random variable are bounded in time, the central momentsof a fractal signal di-

verge with time at least over a short range (Mandelbrot 1974). This can happen—for

instance—when the measurement values represent variations both in time and space,

which makes the signal non-stationary. A signal is non-stationary, if the central mo-

ments vary with time, or in other words, there is a variation in the underlying distribu-

tion of data values. As an example, unsteady pressure valuesacquired during confined

combustion in a convecting flow-field are non-stationary, since the pressure measure-

ment at any location at a given instant depends not only on pressure values at previous

instants, but also on the pressure values at other locationsin the flow-field.

In the description of non-stationary time signals, classical measures such as mean

or variance are not very useful since they vary with time Instead, they are character-
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ized by examining how the moments depend on the time intervalover which they are

evaluated. For instance, the dependency of the standard deviation of the time signal on

time interval is encapsulated in a parameter called the Hurst exponentH (Hurst 1951).

It measures the amount of correlation or the memory in a time series and is related

to the fractal dimension D of the time series asD = 2 − H (Basingthwaighteet al.,

1994). The concept of structure functions introduced by Kolmogorov (Kolmogorov,

1941; Frisch, 1995) is a generalized version of this idea, which explores scaling rela-

tionships between the variations in the moments of measuredfluctuations and the time

interval of measurement.

A time series is called persistent (anti-correlated) if a large value is typically (i.e.,

with high statistical preference) followed by a large valueand a small value is followed

by a small value (Kantelhardt, 2011). In other words, the signal retains a memory of

what happened in the previous time step and has an increased probability of the next

step being in the same direction—such signals have a trend. For a persistent signal, the

Hurst exponentH lies between 0.5 and 1 and the strength of the trend increasesasH

approaches one. An anti-persistent (correlated) time series, on the other hand, is one in

which a large value is typically followed by a small value, and a small value is followed

by a large value. Such signals have a tendency to revert to itsmean value. For anti-

persistent signals, values ofH lie between 0 and 0.5. The strength of mean reversion

increases asH approaches zero. For time signals that are persistent or anti-persistent,

fractal scaling law holds in at least a limited range of scales (Kantelhardt, 2011). For an

uncorrelated time series, the Hurst exponent is 0.5. This isexpected, since the variance

of fluctuations in a memory-less diffusion process should scale linearly with time.

The Hurst exponent also determines the scaling properties of the fractal time series.

If p(t) is a fractal time signal with Hurst exponentH, thenp(ct) = p(t)/cH is another

fractal signal with the same statistics (Westet al., 2003). Algorithms that compute

the Hurst exponent are mostly based on this scaling property. This scaling behaviour

typically has an upper and a lower cut-off that is dependent on the system dynamics.

Detrended fluctuation analysis (DFA) (Penget al., 1994) provides an easy approach to

characterize fractality in a given time series data. Through an evaluation of the structure

functions, correlations in the data are sought for by computing the Hurst exponent which

can then be related to the fractal dimension of the time series.

62



6.1.2 Multifractality and multiplicative processes

Many time signals exhibit a complex scaling behaviour that cannot be accounted for

by a single fractal dimension. A full description of the scaling in such signals involves

multiple generalized Hurst exponents, resulting in interwoven subsets of varying frac-

tal dimension (varying Hurst exponents) producing what is termed a ‘multifractal’ be-

haviour (Frisch and Parisi, 1985). In other words, fluctuations in a time signal that

have different amplitudes follow different scaling rules.The method of DFA can be ex-

panded to explore multifractality in a time signal and the technique is called multifractal

detrended fluctuation analysis (Kantelhardtet al., 2001, 2002). The procedure involves

computing generalized Hurst exponents that describe the scaling of central moments

for various negative as well as positive orders of the moments (q) that have been appro-

priately scaled. For instance, standard deviation has an order of two and its scaling with

time interval gives the Hurst exponent. For a multifractal signal, the generalized Hurst

exponents would have different values for different ordersof the moments. Through

a Legendre transform, this variation in generalized Hurst exponents at different orders

can alternately be represented as a spectrum of singularitiesf(α), in terms of the new

variableα which is conjugate toq. A plot of f(α) for various values ofα is termed the

multifractal spectrum, the width of which provides a measure of the multifractality in

the signal (see Appendix B for details on implementation). An excellent description of

multifractal processes may be found in Paladin and Vulpiani(1987).

The presence of multifractality is an indication that thereare multiplicative pro-

cesses involved in the transfer of energy across various time scales (Sreenivasan, 1991).

Provided one accepts Taylor’s frozen flow hypothesis (Taylor, 1938), the argument can

be extended to hold for energy transfer across various spatial scales as well. The en-

ergy transfer at turbulent flow conditions involve a multiplicative Richardson’s cas-

cade (Richardson, 1922) in the inertial subrange from the integral scale down to Kol-

mogorov scale. As a consequence of this cascade, we should expect the multifractality

to persist even in the presence of heat addition. However, the onset of combustion insta-

bility transforms the dynamics from one characterized by a multiplicity of scales to one

dominated by a few discrete time scales associated with the formation of large-scale

coherent structures in the flow field. It remains an interesting problem to identify how

the interaction of turbulence with the acoustic field of a confinement (augmented by
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heat release) transforms such an energy transfer across multiple time-scales to transfers

that are dominated by a few time-scales. This can happen—forinstance—through an

inverse cascade (Kraichnan, 1967), wherein the energy of the smaller scales gets trans-

ferred to progressively larger scales. The formation of large-scale coherent structures

during combustion instability possibly hints at the presence of such an inverse cascade

co-existing simultaneously with the usual direct cascade that dissipates energy at Kol-

mogorov scales.

6.2 Results

The pressure measurements acquired from the combustor during stable operation and

after the onset of combustion instability are shown in Fig. 6.1. The fluctuations prior

to instability (Fig. 6.1(a)) are seemingly random and display an amplitude spectrum

which is boradband (Fig. 6.1(c)). This has traditionally been classified as combustion

noise in the literature. After the onset, the amplitude spectrum has sharp, discrete peaks

(Fig. 6.1(d)) distinctive of combustion instability. The amplitudes of these oscillations

are fairly high compared to combustion noise suggesting an underlying lock-in mecha-

nism. Such a lock-in may happen for instance between the hydrodynamic fluctuations

associated with periodic vortex formation and the fluctuations of the acoustics in the

confinement. It should be mentioned that although the spectrum of the signal prior to

instability appears to have a shallow peak near the instability frequency, no information

can be gleaned as to how close the operating conditions are tocombustion instability, or

which of the many frequencies that have comparable peaks in the spectrum would be the

dominant frequency at instability. Therefore, the fractalproperties of signals are sought

to obtain precursors to combustion instability, by computing the Hurst exponents.

In order to demonstrate the utility of Hurst exponent in identifying the dynamics,

a comparison is made of three different time series data; (i)Gaussian white noise,

(ii) combustion noise acquired from a bluff-body stabilized configuration (φ = 1.1,

Re = 1.83 × 104), and (iii) synthetic periodic data. Synthetic periodic data along with

Gaussian white noise represent the limiting cases on the values of Hurst exponent for

an anti-persistent (correlated) signal. The instability frequency for the data presented at

combustion instability (Fig. 6.1(b)) was249Hz. Hence, the time scales for the compu-
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Figure 6.1: Unsteady pressure signals acquired from the bluff-body stabilized configu-
ration: (a)φ = 1.1, Re = 1.8× 104, (b) φ = 0.7,Re = 2.8 × 104, showing
transition from combustion noise to combustion instability. Low amplitude,
aperiodic pressure fluctuations get transformed to high amplitude, coherent
oscillations on increasingRe. There is a transition in the frequency spec-
trum from (c) a broad profile with shallow peaks to (d) a spectrum with
sharp peaks. The bin size of frequency in calculating the FFTwas0.3Hz.

tation of Hurst exponent was varied between8−16ms which correspond approximately

to 2-4 cycles of oscillations at combustion instability. For the sake of comparison, the

frequency of the synthetic periodic data was chosen as250Hz so as to be in the vicinity

of the dominant frequency of the data presented at combustion instability.

The Hurst exponents were estimated for the four time signalsfrom the variation

of the structure functions (F q
w) at different time scales of measurement (w) (shown in

Fig. 6.2). White noise has a Hurst exponent of 0.5, characteristic of a diffusive Brow-

nian process. This is because the variance scales linearly with time for white noise.

Hence, the variation of the standard deviation with time, which is also the Hurst ex-

ponent, would have a slope of 0.5 when plotted on a logarithmic scale. The periodic

data has a slope close to zero because the variance of the fluctuations must necessar-

ily be bounded and remain constant over a time period. The slope of the combustion

noise data however, lies between the two limiting conditions for a persistent time sig-

nal. Combustion noise thus represents an anti-persistent (correlated) process since the
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Figure 6.2: Illustration of fractal features of combustionnoise through Hurst exponent.
The combustion noise data presented in Fig. 6.1 are seen to lie amidst those
corresponding to Gaussian white noise and periodic oscillations. The inter-
cepts have been removed from the abscissae and dotted lines are provided to
guide the eye. Uncertainties reported correspond to standard errors in slope
estimation.

Hurst exponent is between 0 and 0.5. The fractal dimensionD for such a process lies

between 1.5 and 2. The Hurst exponent obtained for the pressure signals at combustion

instability (Fig. 6.2(b)) was 0.029 and is not shown in the plot for the sake of clarity.

The multifractality of the three signals presented in Fig. 6.2 was investigated by

computing the generalized Hurst exponents, the results of which are shown in Fig. 6.3:I

(a-c). The high and low amplitude fluctuations in different time intervals (w) are pref-

erentially selected by varying the order of the structure function (q). Whereas a positive

order (q > 0) selects high amplitude fluctuations, a negative order (q < 0) would select

low amplitude fluctuations. We see that the structure functions (F q
w) remain parallel

for Gaussian white noise. This invariance of the slope meansthat the fluctuations are

uncorrelated at all amplitudes, and thatF q
w has an identical linear variation with time

interval at all orders. For the periodic data, the values of the Hurst exponent lie fairly

close to zero at different orders because there is just a single time scale associated with

the fluctuations, thereby making the structure functions bounded in time.
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Figure 6.3: I. The variation in structure functionsF q
w at different ordersq as the time

intervalw is increased (marked as hollow circles (◦) for q = 5, squares
(�) for q = 0, and filled circles (•) for q = −5). The ordinates are shown
on the same scale to represent the variations more clearly. II. Multifractal
analysis of different signals wherein the singularity spectrumf(α) is plotted
as a function of the singularity strengthα which is comparable to the Hurst
exponent. The data presented correspond to (a) monofractaltime series, (b)
Gaussian white noise, (c) combustion noise (φ = 1.1,Re = 1.8× 104), and
(d) periodic data (f = 250Hz).

Now if combustion noise were monofractal; i.e., characterized by just a single frac-

tal dimension, the time series should show a behaviour similar to that of white noise

67



with the same value for all the generalized Hurst exponents,albeit with a slope dif-

ferent from 0.5. However, for combustion noise, we see a difference in the slopes of

measured fluctuations at different values of the exponents (Fig. 6.3:I(b)). This varia-

tion in the Hurst exponents withq is a direct consequence of the multifractal nature of

the time series (Kantelhardt, 2011). The high- and low-amplitude fluctuations present

in the time series scale differently, which results in different values ofHq at different

ordersq. The multifractal spectrum of these signals is shown in Fig.6.3:II (a-c). The

spectrum is broad for combustion noise whereas it is clustered around a point for the

white noise and periodic data. For white noise, we see that the spectrum is concen-

trated around a value of 0.5 as expected. The clustering is around zero for the periodic

data which indicates the absence of scale invariance for periodic time signals, because

fluctuations happen only at one time scale.

Multifractality in a time series can come about in two ways, (i) due to a broad prob-

ability distribution of the data points, e.g., a Levy distribution, and (ii) due to differ-

ent long-term correlations of the small- and large-scale fluctuations (Kantelhardtet al.,

2002). An easy way to identify the presence of correlations in a time signal is to ran-

domly shuffle its data values (West, 2006). Whereas multifractality due to correlations

are removed by randomly shuffling the series, it persists in the former case even af-

ter shuffling. It is interesting to note that even when the multifractality arises due to

long-term correlations, the probability density functionof the time signal over a finite,

fixed sampling duration can be a regular distribution with finite moments (for instance,

a Gaussian). It is only when the sampling duration is varied that one observes the non-

stationarity of the signal and divergence in central moments.

The source of multifractality in the data acquired during combustion noise was ex-

plored by randomly shuffling the acquired data as per the procedure suggested by West

(2006). The original and the randomly shuffled surrogate pressure time-series from

the combustor are shown in Fig. 6.4(a,b). A zoomed in view of the first 500 points

in the series is shown in the inset. Whereas weak correlations are visible in combus-

tion noise data, any such correlations are lost on randomly shuffling the data, making

it memory-less. The distribution of the combustion noise data and the surrogate data

from the bluff-body stabilized combustor is shown as a histogram in Fig. 6.4(c). It was

verified to conform to a Gaussian distribution using the Kolmogorov-Smirnov test for

normality (Massey, 1951), with the null hypothesis for non-Gaussianity rejected at5%
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Figure 6.4: Effects of random shuffling on combustion noise data. Time signals of (a)
the original combustion noise data and (b) the randomly shuffled data. The
first 500 points in both data sets are shown in the inset. Whereas data cor-
responding to combustion noise display correlations with weak periodicity,
the shuffled data is truly random with no memory. (c) Histogram showing
the distribution of the data points (N) in the two signals over3s. It has a
Gaussian profile. Hence, we see that although the data has a Gaussian dis-
tribution, it can arise out of deterministic dynamics. (d) An illustration of
the presence of long-term correlations in the combustion noise data. There
is a loss of multifractality on randomly shuffling the data corresponding to
combustion noise because of a loss of memory among the data points in
the signal. This shows that the multifractality is due to correlations in the
signal and not merely a result of a broad profile in the probability density
function for the values in the time signal. Such a loss of correlation strength
is referred to as a loss of complexity of the system.

significance. Hence, even when the distribution of the acquired samples is a Gaussian,

the dynamics can be complex and multifractal. The mere presence of correlations in the

measured data suggests that it is incorrect to term the associated phenomena as ‘com-

bustion noise’. Further, as we have shown in the previous chapters, fluctuations termed

combustion noise are the result of deterministic dynamics of the global system compris-

ing flow, combustion and the chamber acoustics. In other words, combustion noise is

deterministic chaos. It is probably the random appearance and the Gaussian distribution

of the measured pressure fluctuations that prompted researchers to adopt a signal plus
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noise paradigm in analyzing the phenomena.

Therefore, we feel that a more suitable term to describe the phenomena is to term it

combustion chaos rather than combustion noise. In studyingcombustion noise and its

transition to combustion instability, it may hence be imprudent to adopt the traditional

signal plus noise paradigm, which currently is often implicitly assumed. To illustrate

this point more clearly, the multifractal spectrum of the combustion noise and the shuf-

fled series is shown in Fig. 6.4(d). Whereas the generalized Hurst exponents show vari-

ation at different orders as illustrated by the broad spectrum, they are clustered around

0.5 for the shuffled data, indicating that it has degeneratedinto a noise-like data. Thus,

although techniques such as computation of the FFT or obtaining the probability density

function may suggest a noise-like behaviour, a deeper analysis using nonlinear fractal

analysis can show signs of determinism, if present.

According to a conjecture by Kraichnan (1967), if energy is injected into the flow

at a constant rate at some intermediate scale, an inverse cascade will take place until

the largest scales available are attained. The process of combustion instability involves

a periodic heat release rate, wherein the fluctuations in heat release rate are in proper

phase relationship with the perturbations in the acoustic pressure field inside the con-

finement, thereby satisfying Rayleigh’s criterion (Rayleigh, 1878) which is a necessary

condition for self-sustained pressure oscillations. The shear layer in a turbulent flow

is characterized by several instability frequencies corresponding to the different sizes

of vortices (Winant and Browand, 1974). On the interaction of acoustic waves with

the shear layer, the vortex size can be stabilized when the frequency of these waves

match the shear layer instability frequencies (Schadow andGutmark, 1992). Hence, we

suspect that the formation of large-scale coherent vortices at the onset of combustion

instability as reported in the literature (Rogers and Marble (1956); Parkeret al. (1979);

Pitz and Daily (1983); Smith and Zukoski (1985); Hegdeet al. (1983); Poinsotet al.

(1987); Yuet al. (1991) to name a few) is due to the establishment of an inversecas-

cade with the energy being injected into the flow through combustion at scales defined

by matching of the acoustics with shear layer instability frequencies. Further, a theo-

retical analysis of nearly incompressible flows in the presence of heat addition (Zank

and Matthaeus, 1990) indicate the possibility of such an inverse cascade, wherein en-

ergy can get transported to the long-wavelength acoustic modes from smaller scales,

provided the Mach numbers are low.
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Figure 6.5: (a) Variation of the Hurst exponentH with Re. The Hurst exponents drop
well before the amplitudes start rising in the combustors (Fig. 4.3(a)). The
error bars correspond to the 6-σ intervals on the computed values. Thresh-
old values (shown as horizontal dotted lines) are nominallyset to 0.1 to
indicate the transition. This threshold is user-defined andis independent
of the geometry of system or the fuel composition unlike the amplitude
measurements. (b) The loss of multifractality at the onset of combustion
instability where the spectrum was plotted for the initial and final points in
(a). The time series from which the spectrum was obtained is the same as
that shown in Fig. 6.1(a,b).

It has been possible to successfully predict and prevent combustion instability in the

two combustor configurations using the Hurst exponent as an early warning measure;

the results from the studies without control are shown in Fig. 6.5. AsRe is increased,

there is smooth decrease in the value of Hurst exponent towards zero. This decrease

happens well before the amplitude starts rising in the combustor (see Fig. 4.3). Hence,

by defining a suitable threshold for the Hurst exponent sufficiently distant from zero

(say, 0.1), we can track the proximity of the system to instability and take suitable con-

trol measures. The results present the average value of Hurst exponent computed over

segments ranging from roughly 2 to 4 acoustic cycles of the unsteady pressure data

(8 − 16ms) acquired over3s at a sampling rate of10kHz. However, it is possible to

obtain comparable results even with shorter time signals. Also, the threshold is inde-

pendent of the system configuration since it merely is an indicator of the proximity of

the system to an oscillatory regime.

The loss of multifractality in the signals at the onset of combustion instability is

illustrated in Fig. 6.5(b). The plot clearly shows the spectrum diminishing to a point at

the onset of combustion instability. This loss of multifractality is due to the predomi-

nance of a single time scale that dominates the dynamics. Fora fractal signal, such a

loss of variability in scales observed as narrowing of the frequency spectrum is termed
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a ‘loss of spectral reserve’ (West and Goldberger, 1987). Ina combustor, since this loss

of spectral reserve happens in a gradual manner when the parameters are varied, it can

serve as an early warning signal to an impending combustion instability.

It should be noted that the flow is still turbulent after the combustor becomes un-

stable. The power spectrum (Fig. 6.1(d)) also shows that thecontributions from time

scales other than the instability frequencies and their multiples, though small, are still

present. The effect of turbulence can also be seen in the modulation of the amplitude of

pressure fluctuations at instability. It is this turbulencethat results in a small range ofα

in the multifractal spectrum during combustion instability. However, the range ofα is

reduced significantly when compared to regimes of combustion noise and is clustered

around zero for the instability dominated signals. This collapse of scales leads to a loss

of multifractality. A signal is multifractal when contributions of different time scales

cannot be ignored without missing out on significant detailsof the phenomena. Dur-

ing combustion instability, it is entirely acceptable to consider the dynamics as a single

time-scale problem. However, in the regions prior to instability, the contributions of

other time-scales cannot be ignored without missing key aspects of the dynamics. Also,

ignoring the contributions of these time scales—as we have seen—results in the loss of

predictability of an impending instability.

6.3 Concluding remarks

Traditional analysis and modeling of combustion noise as well as its transition to high

amplitude combustion instability often neglects or averages out the unsteady irregular

fluctuations observed in the measured data, or treat them as astochastic background.

A detailed analysis of the irregular fluctuations can provide information that is of diag-

nostic as well as prognostic value. Combustion noise is deterministic chaos and results

from the coupled nonlinear interaction amongst turbulence, combustion and the cham-

ber acoustics. Hence, the use of the term noise to describe the pressure fluctuations

inside a combustor during stable operation requires careful consideration as the mea-

surements do not display features one would expect from a stochastic random process.

Moreover, these fluctuations contain useful information that can help forewarn an im-

pending instability.
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The pressure fluctuations during combustion noise display multifractality which

shows that multiple spatial/temporal scales are involved in the energy transfer. This

further draws attention to the possibility of an inverse energy cascade in the inertial

subrange. There is a gradual loss of multifractalilty for increases in Reynolds number

towards combustion instability. Such a loss of spectral reserve can act as an early warn-

ing signal that predicts combustion instability well before the amplitudes start to rise

in the combustor, in other words, well before the actual stability margins are reached.

Moreover, the superiority of the method is clear on realizing that techniques such as

FFT that rely on a frequency-domain analysis often cannot predict the proximity of the

operating conditions to combustion instability.
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CHAPTER 7

Dynamics of intermittency

In this chapter, we will see that intermittent burst oscillations are also observed in the

combustor on increasing the Reynolds number further past conditions of combustion in-

stability towards the lean blowout limit. Intermittent dynamics is thus a typical feature

in the dynamics of turbulent combustors—even more so than limit cycle oscillations.

The chapter aims to establish that such intermittent burstsarise naturally in systems

composed of two attractors through the formation of homoclinic orbits in the phase

space of the global system dynamics. It also aims, through analyzing the recurrence

properties of these intermittent states, to provide a systematic way to inspect the pres-

ence of such homoclinic orbits from a measured time signal. Finally, the flame dynam-

ics of the intermittent states observed prior to lean blowout will be investigated using

high-speedCH∗ chemiluminescence imaging.

7.1 Background

The phenomenon of intermittency has received a lot of attention in the description of

deterministic dynamics arising from pattern forming complex systems. Through a study

of simple dissipative dynamical systems, Pomeau and Manneville (1980) presented

three models of intermittency classified as type I-III to describe the routes of transi-

tion from a stable periodic behaviour to chaos. Even more varieties of intermittency

were discovered later on such as chaos-chaos intermittency(Richardson, 1993) (eg:

on-off intermittency (Ott and Sommerer, 1994) and in-out intermittency (Covaset al.,

2001), crisis-induced intermittency (Grebogiet al., 1987), type-X intermittency (Price

and Mullin, 1991) or type-V intermittency (Baueret al., 1992). There has also been

a number of experimental observations (Hammeret al., 1994; Argoulet al., 1993) of

intermittent dynamics in the literature.

As we have seen so far, interaction of sound with a reacting turbulent flow pro-

vides us with yet another dynamical system where intermittency is observed—seen



Figure 7.1: (I) Typical unsteady pressure measurements and(II) corresponding ampli-
tude spectra acquired during the dynamically different flowregimes from
the combustor. (a) Combustion noise (Re = 2.19 × 104, φ = 0.93), (b)
intermittency prior to combustion instability (Re = 2.42 × 104, φ = 0.83),
(c) combustion instability (Re = 2.74 × 104, φ = 0.72), (d) intermittency
prior to lean blowout (Re = 4.95×104, φ = 0.39) and (e) near lean blowout
(Re = 6.92× 104, φ = 0.27).

as intermittent bursts of pressure oscillations that emerge from a chaotic background.

Shown in Fig. 7.1 are the various qualitatively different stages observed in the unsteady

pressure measurements from the combustor at progressivelyincreasing flow Reynolds

numbers (decreasing equivalence ratios). Observe the widevariation in amplitudes

in the pressure signals shown in Fig. 7.1:I(b,d). We see thatthe dynamic transition

from low-amplitude fluctuations (Fig. 7.1:I(a)) to high-amplitude combustion instability

(Fig. 7.1:I(c)) happens via such a regime of intermittent oscillations where the pressure

fluctuations rise in bursts of periodic, high-amplitude oscillations from a background

of low-amplitude, aperiodic fluctuations. Correspondingly, the spectra of the pressure

signals show a gradual emergence of peaks as the dynamics approaches combustion

instability (Figs. 7.1:II(a-c)).

Further increases in Reynolds number after the onset of combustion instability leads

to the occurrence of intermittent oscillations again (Fig.7.1:I(d)) suggesting yet another

transition in the combustor dynamics. These intermittent oscillations persist for a range
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of Reynolds number until the pressure signals eventually transform to low-amplitude

fluctuations (Fig. 7.1:I(e)) before the flame eventually blows out. The strength of the

peaks in the pressure spectra also start diminishing as the dynamics transitions towards

intermittency and lean blowout (Figs. 7.1:II(d,e).

From the figure, it is clear that intermittency represents a transition regime in the

dynamics of combustors prior to large-amplitude combustion instability as well as lean

blowout. Also, it is evident from the pressure spectra (Fig.7.1:II(a-e)) that the dynamics

of these intermittent oscillations involve time scales other than those of the confinement

acoustics. For instance, although it is a reasonably good approximation to consider

combustion instability as dynamics happening over a singletime scale (and its multi-

ples), at least one additional time scale is required to describe the modulation of the

pressure amplitudes from high to low values and back to low values observed during

regimes of intermittency.

Recently, Kabiraj and Sujith (2012) showed that intermittency is possible in simple

thermoacoustic systems prior to lean blowout of the flame. The flame was seen to be

highly unsteady and wrinkled during such intermittent regimes with irregular lift-off

and reattachment. Further, the intermittent signal was characterized by high-amplitude

chaotic oscillations that emerged from a quiet background.In the case of combustors

in a turbulent flow field, we observe that the signals display what is termed an intermit-

tent bursting phenomenon—bursts of periodic oscillationsthat appear in a near-random

fashion amidst aperiodic irregular fluctuations. As has been shown in previous chapters,

the dynamics of such systems can be thought of as being composed of two subsystems

or attractors that operate on different time scales; acoustics which is characterized by

the local speed of sound and hydrodynamics which operates over a broader range of

time scales defined by the local flow speeds. In what follows, we shall probe deeper

into the dynamic aspects of such intermittent burst oscillations.

7.2 Intermittency and homoclinic orbits

A homoclinic orbit is one in which the unstable manifold of a hyperbolic equilibrium

state of the system merges with its own stable manifold. Although a close associa-

tion between homoclinicity and intermittency has been shown experimentally in the
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literature (Richettiet al., 1986; Herzelet al., 1991; Parthimoset al.), identification of

homoclinic orbits from a measured time series has proved a difficult task. In Fig. 7.2,

the evolution in phase space of an intermittent burst is shown for the pressure signal

acquired prior to lean blowout. The trajectory is seen to spiral out of the center to the

unstable orbit and then spirals back in through the plane of oscillations, which could

possibly represent a homoclinic orbit. However, the existence of such orbits cannot be

concluded by a mere visual inspection of the phase space. Therefore, we propose a new

technique to infer the presence of homoclinic orbits in the phase space of the global

attractor.

Figure 7.2: A portion of the burst signal of (a) the intermittent signals prior to combus-
tion instability (Re = 2.57× 104,φ = 0.89) and (b) the intermittent signals
prior to lean blowout (Re = 5.14 × 104,φ = 0.37). The corresponding
phase portraits (in 3D) are shown in (c) and (d) respectively. The embed-
ding dimension was chosen to bed0 = 10 with τopt = 1.0ms for both the
signals. The evolution of burst oscillations in phase spaceresults in the ape-
riodic oscillations spiraling out into high amplitude oscillations and then
again spirals back into the low amplitude aperiodic dynamics.

The circulation time of trajectories in phase space for homoclinic orbits are domi-

nated by their passage time near the saddle fixed point. This time is highly sensitive to

external perturbations and the distribution of passage times for a given initial distribu-

tion of points near the saddle point is given by the expression (Holmes, 1990):

77



P (T ) =
2λ∆(T )e−∆2(T )

√
π(1− e−2λT )

(7.1)

where∆(T ) = δ

[(

α2

λ

)

(e2λT − 1)

]

−1/2

, λ is the unstable eigenvalue of the saddle

point,α is the noise level rms,δ is the size of the neighbourhood influenced by noise.

P (T ) is a skewed distribution with its peak value different from the mean and has an

exponential tail (Holmes, 1990) asT → ∞ (P (T ) ≈ 2δ√
πα

λ3/2e−λT ). This behaviour

is independent of the details of the initial distribution (Stone and Holmes, 1991). It is

known that the distribution of the laminar phases (quiet, aperiodic regimes) for both

type-II and type-III intermittencies have an exponential tail (Klimaszewska and Ze-

browski, 2009). Inspection of the recurrence plots of the combustor pressure signal ac-

quired during intermittency is inconclusive; however, thedetected features correspond

to type-II or type-III intermittency. As the analysis described above illustrates, systems

exhibiting type-II or type-III intermittency are characterized by homoclinic orbits in the

underlying phase space.

Figure 7.3: Histograms of the number of visits and the duration of time spent trapped
in the low amplitude aperiodic regimes for (a) the intermittent signals prior
to combustion instability (Re = 2.57 × 104,φ = 0.89) and (b) the inter-
mittent signals prior to lean blowout (Re = 5.14 × 104,φ = 0.37). The
data sets correspond to pressure signals acquired for a duration of 1.5s at a
frequency of5kHz. A skewed distribution with an exponential fall-off is
visible in both the histograms which is a distinctive feature of systems that
have homoclinic orbits in the phase space of dynamics. An exponential fit
to the tail is shown as gray lines over the histogram.

The distribution of the passage time of the dynamics in low amplitude regimes can
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be estimated from a recurrence plot as the frequency distribution of the vertical lines

(or horizontal lines since the matrix is symmetric) in the recurrence plot. Histograms

of this vertical length frequency distribution for the two signals were plotted in Fig. 7.3

to understand the variation of the frequency of visits as a function of the trapping time.

The histogram reveals a skewed distribution with its peak off the mean and has an

exponentially decaying tail.

The presence of such an exponential tail is thus indicative of homoclinic orbits in

the system (Stoneet al., 1996). The trajectory of such a homoclinic orbit is repeatedly

injected near the stable manifold of a saddle node as a resultof the perturbations in the

turbulent base flow. Thus, recurrence quantification servesas an efficient tool for the

inspection of homoclinic orbits in the phase space of the system dynamics. In the next

subsection, we will revisit our current understanding of the flame dynamics near lean

blowout and analyze them in terms of the observed intermittency.

7.3 Intermittent flame dynamics near lean blowout

In a comprehensive review of bluff-body stabilized flames, Shanbhogueet al. (2009)

showed that spatially and temporally localized extinctionevents—manifested as holes

in the flame sheet—occur sporadically near lean blowout. Thefrequency of such events

increase as lean blowout is approached. Increased presenceof time-localized and in-

termittent events in the acoustic data near lean blowout wasalso reported by Nair and

Lieuwen (2005) for three combustors with pilot, swirl and bluff-body stabilized flames

respectively.

We have seen that intermittent dynamics corresponds to time-localized behaviour of

pressure oscillations with high-amplitude bursts of oscillations appearing in a measured

pressure signal in a near-random manner. In order to understand how the measured in-

termittency translates to unsteady flame dynamics in the combustor, high speed images

with CH∗ filter were acquired simultaneously with pressure measurements at an oper-

ating condition within the intermittent regime observed prior to lean blowout (Fig. 7.4).

The amplitudes vary over a wide range from high to low amplitudes (Fig. 7.4(a)) and

the zoomed portion of the time signal clearly displays the periodic and the aperiodic

regimes in the signal (Fig. 7.4(b)). The instantaneous images show the flame gradually
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Figure 7.4: (a) Unsteady pressure signal and a sequence of line-of-sight integrated in-
stantaneous flame images acquired at the intermittent stateprior to lean
blowout in the combustor (Re = 5.14 × 104,φ = 0.37). (b) A zoomed
portion of the signal reveals aperiodic segments amidst periodic dynamics.
(c) The corresponding high speed images show aperiodic detachment of the
flame from the upper lip of the bluff-body and subsequent reattachment.
As a result of this detachment, there is a decrease in the heatreleased and
the pressure signal loses its periodicity and the amplitudes decrease. The
signal eventually gains amplitude and periodicity upon flame reattachment.
This appearance of bursts of periodic oscillations in a near-random manner
is a dynamical state termed intermittency. The outline of the bluff-body is
shown for the ease of visualization.

disappearing (Fig. 7.4(c): i-iii) from the upper portion ofthe bluff-body, remains in

the same state for a short time (Fig. 7.4(c): iv-vi) and eventually reestablishes itself on

the upper portion of the bluff-body (Fig. 7.4(c):vii-ix). When the flame detaches from

the upper portion of the bluff-body, the corresponding pressure signal loses its period-

icity and becomes aperiodic due to the lack of sufficient, sustained energy release to

acoustics from the unsteady heat release. The signal is seento regain periodicity when

the flame reattaches which further corroborates that it is the unsteady heat release that
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sustains the periodic oscillations.

The state of intermittency in the pressure oscillations canthus directly be linked

to aperiodic detachment of the flame from the flame holder resulting in an insufficient

driving of the oscillations in the combustor. This insufficient driving can be envisaged to

result from the flame detachment or extinction or even due to the presence of holes in the

flame sheet due to high turbulent strain rates. The characterization of the intermittency

in the measured signals hence allows for an indirect characterization of the unsteady

flame dynamics near lean blowout reported widely in the literature and can therefore be

utilized to provide precursors that forewarn an impending blowout in the combustor.

7.4 Concluding remarks

Intermittent bursts characterized by periodic high amplitude oscillations amidst irregu-

lar low amplitude chaotic fluctuations are produced when a turbulent flow interacts with

the acoustics of a confinement forming dynamic objects knownas homoclinic orbits in

phase space. Recurrence plots provide a convenient and quantitative descriptive tool to

inspect and identify the presence of a homoclinic orbits in the phase space by measuring

the amount of time the system lingers around the low amplitude fluctuations. A skewed

distribution of passage times with an exponential tail is a distinctive signature of sys-

tems with a homoclinic orbit; i.e., the trajectory is repeatedly injected near the stable

manifold of a saddle in the presence of small perturbations.Observing the flame images

close to lean blowout identifies the aperiodic detachment offlame from the bluff-body

as the source of intermittent burst oscillations. This intermittent detachment reduces

the driving of the acoustics by the unsteady heat release as aresult of which the pres-

sure oscillations lose their periodicity and amplitude comes down resulting in turbulent

aperiodic fluctuations.
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CHAPTER 8

Is combustion necessary for intermittency?

In this chapter, we show that intermittent burst oscillations are a typical feature of tur-

bulent flow-sound interaction, even in the absence of combustion.The onset of self-

sustained oscillations in a turbulent pipe flow across an orifice is investigated in a

whistling apparatus. Analysis of measured pressure fluctuations reveals that this emer-

gence of order from turbulence happens through an intermediate intermittent regime

characterized by bursts of periodic oscillations that appear in a near-random fashion

amidst the background chaotic fluctuations. The interesting feature is that these inter-

mittent bursts correspond to a frequency distinct from the final oscillatory state as the

boundary condition at the orifice exit undergoes a transition at the onset of whistling.

8.1 Introduction

Pressure fluctuations in unsteady flows are classified as sound or pseudo-sound depend-

ing on whether the underlying pressure field is propagating or non-propagating (?). The

pressure variationsp′ in a sound field (acoustic waves) are dependent on the local speed

of soundc0 via p′ ∼ O(ρ0c0u), whereρ0 is the mean flow density andu refers to the

typical magnitude of the local flow velocity. On the other hand, the local variations

in pressure due to a pseudo-sound field vary asp′ ∼ O(ρ0u
2), thus independent of

the sound speed. When an unsteady flow passes through a confinement, both forms of

pressure fluctuations are induced and these fluctuations arecharacterized by a multi-

plicity of time scales associated with local unsteadiness and acoustic wave propagation.

When one of the local hydrodynamic time scales matches an acoustic time scale, self-

sustained periodic oscillations, which are difficult to control in practice, are established.

Screech in jets with shocks, edge tones, howling of ejectors, cavity noise, whistling in

pipes (pipe tones) are some such examples of flow-induced oscillations (?).

In this chapter, the mechanism underlying the transition from a turbulence-dominated

state to a state dominated by periodic dynamics in a system without combustion will be



illustrated through experiments and theoretical arguments. This emergence of order

(periodic dynamics) from turbulence is contrary to the transitions often encountered in

hydrodynamic flow-fields where an increase in the Reynolds number results in a transi-

tion from periodic oscillations to turbulence (?).

8.2 Experiments

Motivated by the pioneering work on pipe tones by Anderson (??), we investigate the

multi-scale temporal dynamics of turbulent flow-sound interaction in an experimental

setup consisting of a pipe of lengthL = 600mm and diameterD = 50mm terminated

by a circular orifice of diameterdo = 15mm and thicknesst = 5mm (Fig. 8.1). Such

a configuration is present, for instance, in automobile exhaust pipes (?), segmented

solid rocket motors (SRMs) (?) and gas transport systems (??). The pressure-driven

flow, after passing through a moisture separator and a rotameter (used to measure the

incoming flow rates), enters the pipe through an upstream cylindrical chamber of length

Lc = 300mm and diameterdc = 300mm.

A region of strong velocity gradients (shear layer) forms atthe leading edge of the

orifice and rolls up into a vortex sheet that convects downstream. It has previosuly

been conjectured that the separated shear flow produces fluctuations in the effective

aerodynamic orifice area due to the growth and periodic shedding of vortices from the

orifice side walls (?). These area fluctuations in turn produce variations in the pressure

drop across the orifice (?). When the frequency of these variations matches one of the

acoustic modes of the pipe-orifice combination, self-sustained pipe tones or whistling

is established. Later studies have further proposed that whistling is established when

the separation streamline from the leading edge of the orifice impinges on the trailing

edge (?).

Experimental measurements were performed by systematically increasingṁ from

0.60g/s to 0.92g/s in steps of0.02g/s and then decreasing back to0.60g/s, where

ṁ is the mass flow rate of air through the duct-orifice system. The Reynolds number,

which serves as the non-dimensional control parameter, is defined asRe = 4ṁ/(πdoµ),

whereµ = 1.85× 10−5Pa.s is the dynamic viscosity of air at the ambient condition of

26 ◦C and1atm. The variation inRe was in the range2.75 × 103 − 4.22 × 103 with
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Figure 8.1: Schematic of the experimental setup used in the present study. The pipe has
a lengthL = 600mm and diameterD = 50mm terminated by a circular
orifice of diameterdo = 15mm and thicknesst = 5mm. Air enters the
upstream cylindrical chamber, of lengthLc = 300mm and diameterdc =
300mm, through the opening in the left.

a measurement uncertainty of2.7%. The pressure fluctuations generated by turbulence

(pseudo-sound) decays much faster than the radiated sound field downstream of the ori-

fice (??). Hence, pressure measurements were acquired with a transducer located2mm

to the right of the trailing edge of the orifice, a location where the levels of the turbulent

pressure field were above the noise threshold of the transducer (Fig. 8.1). A total of 33

pressure measurements were performed; each pressure measurement corresponds to an

acquisition for a duration of10s at a sampling frequencyFs of 10kHz using a free-field

microphone. Though the microphone has a resolution of200µPa, measuring the elec-

trical noise prior to the experiments revealed that pressure fluctuations below∼ 0.09Pa

are not well resolved. To obtain the amplitude of pressureP at various frequenciesf , a

Fast Fourier Transform (FFT) was performed on the pressure time series with a spectral

bin size of∆f = 0.08Hz.

8.3 Results

Figure 8.2 presents the results from an experiment in which the Reynolds number was

increased fromRe1 = 2.75×103 toRe2 = 4.22×103 in steps of∆Re = 0.09×103. At

eachRe, the flow was allowed to settle for5s before pressure measurements were made.

The frequency content of the 14 signals obtained forRe < 4.04 × 103 (Fig. 8.2(a))

reveal the presence of a broad peak centered around a dominant frequencyf1 that re-

mains almost invariant (f1 = 537Hz with a variation within1Hz) on increasingRe.

The invariance suggests thatf1 is one of the natural acoustic frequencies of the duct-
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orifice system rather than a flow frequency. The broad profilesof the spectra shown in

Fig. 8.2(a) indicate a pressure signal dominated by turbulence, and a typical time sig-

nal acquired atRe = 2.75 × 103 (Fig. 8.3(a)) does display an aperiodic behaviour. A

secondary shallow peak centered aroundf2 = 217Hz is also visible in the spectra for

Re < 4.04 × 103 and it gradually bifurcates into two asRe is increased (Fig. 8.2(a)).

Such pairs of peaks in the spectra have previously been shownto signify the proximity

of the operating conditions to a period doubling bifurcation (?).

Figure 8.2: (a) Plots of the spectra (P vs. f) computed from the pressure time series for
variousRe prior to the onset of whistling (Re < 4.04 × 103). (b) Plots of
the spectra forRe ∈ [2.75− 4.22]× 103. The arrows indicate the direction
of change ofRe in the experiment.

For relatively largeRe (Re = 3.85×103, for example), the pressure time series dis-

plays bursts of periodic oscillations (of frequencyf1) that appear in an almost random

manner amidst aperiodic fluctuations (Fig. 8.3(b)). The average duration of these peri-

odic bursts increases with an increase inRe, leading to the increased spectral content at

f1 as seen in Fig. 8.2(a). Spatially localized puffs of turbulence with a finite lifetime are

often observed in pipe flows prior to the critical transitionto turbulence (??). In our ex-

periments, we observe the converse scenario, with intermittent puffs of time-localized

periodic oscillations forming in a background of turbulentfluctuations.

Figure 8.2(b) shows the amplitude spectra for all the 17 pressure measurements,

spanningRe1 = 2.75×103 toRe2 = 4.22×103. While the spectra forRe < 4.04×103

contain broad peaks aroundf1 andf2, the pressure fluctuations forRe ≥ 4.04×103 are

more coherent with sharp peaks of significantly higher amplitudes in the spectra (termed

tones); a typical times series obtained atRe = 4.22× 103 is shown in Fig. 8.3(d). This

transition in the spectra occurs atRe = 4.04× 103, wherein the dynamics undergoes a
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bifurcation from a low-amplitude intermittent regime to high amplitude self-sustained

periodic oscillations (Fig. 8.3(c)). The sudden rise in amplitudes and the sharpening

of the spectra signify the onset of whistling, with the two dominant frequencies dur-

ing whistling related byf3 = 2f2 = 434Hz, resulting in period-2 oscillations. In the

whistling regime, while the spectral content atf1 is very small, the dominant frequen-

ciesf2 andf3 increase linearly withRe. We further note that the flow is still turbulent

during whistling although the dynamics is dominated by periodic pressure fluctuations.

Figure 8.3: Dynamics of the transition for increasing Reynolds number (Re): (a) ape-
riodic fluctuations (Re = 2.75 × 103), (b) intermittent bursts (Re =
3.85×103), (c) transition to periodic oscillations (Re = 4.04×103), and (d)
ordered period-2 oscillations (Re = 4.22 × 103). (e) τp, the time spent by
the dynamics in the periodic state over a 0.5s duration, plotted as a function
of Re along the forward and reverse paths. (f) The r.m.s. value of pressure
fluctuations (p′rms) plotted as a function ofRe along the forward and reverse
paths. The bistable regime inRe lies between the two vertical dashed lines.
Three bursts of varying duration are shown using horizontalarrows in (b).

For a fixedRe, the time spent by the dynamics in the periodic regime was computed
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by tracking the repeating patterns in the pressure fluctuations after delay embedding the

data onto a suitable mathematical phase space (of dimensiond0 = 8 and embedding

delayτopt = 0.4ms) (Marwanet al., 2007; Abarbanelet al., 1993). The first 9 seconds

of the signals were divided into segments ofTs = 0.5s duration and two points in

the phase space are treated as recurrent when the distance between them is less than a

fixed thresholdǫ0 = 2.5Pa, which roughly corresponds to a pressure amplitude|p′| of

ǫ0/
√
n ≈ 0.9Pa when the signal is embedded in eight dimensions. This thresholding

generates a binary recurrence matrixRij which has a value of one when the distance

between pointsi andj in the phase space exceedsǫ0 and a value of zero otherwise. The

time spanT = 0.5s is much higher than the largest dominant time period of oscillations

during whistling (T0 ∼ 4.6ms). The average duration of the time spent in the periodic

state in a segmenti is then computed as:

τ ip =
1

Fs

ΣN
v=1vP (v)

ΣN
v=1P (v)

, i = 1, 2, ..., 18. (8.1)

whereP (v) is the probability distribution of stringsv of consecutive1s in the recurrence

matrixRij , for a time series comprisingN = 5000 data points sampled at a frequency

Fs. The mean time spent in the periodic stateτp is then computed as the average ofτ ip

over 18 such segments. A value ofτp = 0.5s corresponds to the dynamics spending

all the time in the periodic state. AsRe is increased, i.e. along the forward path, the

trajectory in phase space repeats itself more often and consequently the duration of time

spent in the periodic state increases from0s to 0.5s (Fig. 8.3(e)), as the duration of an

individual periodic burst increases on the average.

The periodic oscillations represent a state of hydrodynamic-acoustic lock-in. Shown

in Fig. 8.3(f) is the variation of the r.m.s. valuep′rms of the pressure time series (ob-

tained over10s) as a function ofRe from the two experiments in whichRe was varied

from Re1 = 2.75 × 103 to Re2 = 4.22 × 103 (forward path) and then back from

Re2 = 4.22 × 103 to Re1 = 2.75 × 103 (reverse path), respectively. The transition to

self-sustained whistling is subcritical: as shown in Fig. 8.3(f), along the reverse path,

the periodic oscillations (whistling) persist untilRe = 3.67 × 103, for which we ob-

served intermittent fluctuations along the forward path. The upper branch in the bistable

regime of Fig. 8.3(f) corresponds to the periodic states with frequenciesf3 andf2 in the

spectra and the lower branch corresponds to the intermittent burst states with a domi-
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nant frequencyf1 in the spectra. The hysteresis is also visible in the plot ofτp vs. Re

(Fig. 8.3(e)).

A theoretical model based on 1D linear acoustics is constructed by linking the

plenum, duct and the orifice as three network elements separated by junctions that

satisfy the interface conditions (pressure continuity andmass flow conservation) (?).

Both the plenum left end and the orifice right end are acoustically open. The effects

of mean flow and mean density variations are negligible as themaximum mean flow

velocity (u0 = 4.4m/s) is much smaller than the speed of sound (c0 = 346.6m/s) in

air at the operating conditions. Assuming a harmonic variation for the acoustic pressure

perturbations, the acoustic pressure and velocity fluctuations may be represented as:

p′ = ℜ[eiωt(Aeikx +Be−ikx)], (8.2)

u′ = ℜ
[

eiωt
(

Aeikx −Be−ikx
)

/ρ0c0
]

, (8.3)

wherek = ω/c0 is the wavenumber andℜ denotes the real part. With the origin of the

coordinate system (x = 0) fixed at the duct-plenum junction, and taking the direction

of mean flow to be the positive x-axis, the boundary conditions may be expressed in

matrix form as:
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= 0 (8.4)

where the subscriptsp, d ando refer to the plenum, duct and orifice respectively, andSp,

Sd andSo are the corresponding areas of cross-section. By setting the determinant of

the matrix equal to zero, a non-trivial solution is found atf = 533Hz which compares

well with the frequencyf1 observed prior to the transition to whistling. The frequency
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f1 arises due to the presence of the plenum, as removing the plenum element from the

theoretical analysis removed the frequencyf1. No solution, however, was found near

f2 or f3 with this arrangement.

Based on the mechanism conjectured in?, instability is established when the shear

layer reattaches at the trailing edge of the orifice. This should produce a recirculating

vortex bubble on the orifice with a circulation time given to first order byTc = 2t/u0,

whereu0 is the mean flow velocity through the orifice. The value of the frequency

associated with this circulation at the transitionRe (= 4.13 × 103) is fc = 1/Tc =

428.6Hz, which is in good agreement with the frequencyf3 obtained from experiments.

The transitionRe is defined as theRe at and above which low amplitude pressure

fluctuations are not possible in the forward path experiment.

The mechanism also provides further insight on why the frequenciesf2 andf3 are

absent in the linear acoustic analysis prior to whistling. Formation of the vortex bubble

at the orifice can acoustically close the right end of the orifice boundary since the effec-

tive area for the flow to pass through is reduced. Imposing a closed boundary condition

at the orifice exit and performing the linear acoustic analysis, a non-trivial solution is

obtained atf = 435Hz which is close to the dominant frequencyf3 observed during

whistling. This also explains why the frequencyf1 is not obtained once whistling is

established. Increasing theRe (or u0) further would require temporal adjustment of

the boundary conditions (acoustic pressure drop across theorifice) such that the flow-

acoustic lock-in is maintained. Flow visualization experiments performed by?? have

revealed vortex coalescence downstream of the orifice for various orifice parameters.

The subharmonic frequencyf2, and the observation of period-2 oscillations at whistling

hence occur when two vortices with frequenciesf3 coalesce downstream of the orifice,

forming a bigger vortex with an associated frequencyf2 = f3/2.

The multifractal spectrum which was broad prior to transition collapses to a growth

rate near 0 after the transition (Fig. 8.4(a)). In other words, the relevant time scales

that dictate the physics of the problem become fewer in number. The loss of mul-

tifractality can also be used as a precursor to an impending instability. Shown in

Fig. 8.4(b) is the variation of Hurst exponentH (or H2) of the pressure fluctuations

over a range of Reynolds number varying from conditions far from whistling to con-

ditions of self-sustained oscillations. The Hurst exponent drops smoothly across this
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Figure 8.4: Characterizing the onset of self-sustained oscillations. (a) The multifrac-
tal spectrum acquired for the first2s of the data overlaid on the spectrum
estimated for the data from4 − 10s after the onset. (b) Variation of Hurst
exponentH with Re along the forward path.

range of Reynolds number. This smooth decline in the divergence rates is due to the

presence of a regime of Reynolds number characterized by intermittent bursts in the

signal. The density of such periodic ‘puffs’ in the signal for a fixed time period of mea-

surement increases as the mean flow velocities approach conditions of whistling and the

Hurst exponents are an alternate measure of this density.

8.4 Concluding remarks

The results from this chapter show that intermittency is a universal feature that presages

self-sustained flow-induced oscillations in a number of systems, and not just in pres-

sure measurements of turbulent flow through combustors withunsteady heat release.

The nature of the problem requires that the effects of flow turbulence be incorporated

appropriately in models of flow-sound interaction and not just ignored as background

perturbations to the underlying dynamics, as is currently often done. Finally, the study

shows that quantities like the Hurst exponent are universalindicators of the proximity

of a system to self-sustained oscillations no matter what the source of the underlying

dynamics is.
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CHAPTER 9

Conclusions and outlook

The present thesis focussed on characterizing the various dynamical states underlying

the transitions observed in a laboratory-scale combustor operating in a turbulent flow-

field from regimes of stable operation towards large amplitude combustion instability.

It was identified that combustion noise is deterministic chaos and that the transition

towards combustion instability is preceded by a regime of intermittent bursts composed

of large-amplitude pressure oscillations that emerge in a near-random manner from the

background of low-amplitude, chaotic pressure fluctuations.

A mechanism was proposed, which necessitates the existenceof such an intermittent

regime prior to the onset of combustion instability, provided the underlying flow-field

is turbulent. A phenomenological model was described usingthis mechanism which

was able to qualitatively reproduce the intermittency observed in experiments. Further,

a host of precursors were also obtained by quantifying theseintermittent states that can

act as early warning signals to combustion instability in fielded combustors.

Traditional linear techniques that rely on a ‘signal plus noise’ paradigm was found

to be insufficient to characterize the intermittent and chaotic states observed in the com-

bustor, or predict the onset of an instability. The complexity of the dynamics requires

that one employ fractal measures to describe the scaling of these irregular pressure

fluctuations. It was found that combustion noise is multifractal, with different scaling

properties for different amplitudes. Further, the onset ofinstability results in a loss of

this multifractality, which in turn can be utilized as yet another early warning measure

to combustion instability.

It is shown that the intermittency is due to the establishment of homoclinic orbits in

the phase space of the underlying attractor. Such orbits connect the periodic and aperi-

odic portions in phase space resulting in burst oscillations. The intermittent regime was

also found to be a characteristic of the pressure signals prior to lean blowout. Analysis

of the high speed flame images reveal aperiodic detachment and reattachment of the



flame from the bluff-body lip. The detachment leads to a drop in the pressure amplitude

and aperiodicity and reattachment results in the er-establishment of periodicity.

Intermittency was seen to be a characteristic feature in confined turbulent flow-

fields, even in the absence of combustion. Measured pressurefluctuations of an un-

steady flow-field through a pipe across an orifice reveals the formation of intermittent

burst oscillations prior to the transition to pipe tones (whistling). The mechanism was

identified as the closing of the boundary condition resulting in the formation of period-2

oscillations at the onset of whistling.

Precursors could be defined only because there was a regime ofintermittent burst

oscillations that presaged an instability. It would, therefore be interesting to explore the

validity of the proposed mechanism for a variety of fluid systems and machines that

operate in a turbulent flow-field. It would also be interesting to test whether such in-

termittent states can be observed in systems with a laminar flow-field; for instance, in

ducted laminar premixed or diffusion flames and electrical Rijke tubes with a laminar

flow-field. A possible study could then further entail proposing precursors in such lam-

inar systems and identifying universal features underlying a transition to combustion

instability.
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APPENDIX A

Validation of phase space reconstruction

In this chapter, a simple three dimensional model is introduced, that displays chaotic

behaviour for certain parameter values and initial conditions. The techniques that are

used to reconstruct the phase space and determine the presence of chaos in the combus-

tor time trace are then applied to the time traces obtained from this model to illustrate

and validate the applicability of the techniques.

A.1 Lorenz system

The Lorenz system comprises a set of three nonlinear ordinary differential equations

that were developed by Edward Lorenz as a simple model for atmospheric convection.

The equations describe fluid circulation in a shallow layer which is heated from below

and cooled above and in its simplest form may be written as:

ẋ = σ(y − z), (A.1a)

ẏ = −xz + rx− y, (A.1b)

ż = xy − bz (A.1c)

whereσ, r andb are three constant parameters. Shown in Fig. A.1 is the time variation

of the 3 variables and the evolution of the variables in a three dimensional phase space

for the following choice of the parameters:σ = 10, r = 28 andb = 8/3. It is seen that

the fluctuations in the three dynamical variables display highly erratic behaviour with

no apparent periodicity. The evolution in phase space showsa pattern which consists

of two loops formed by the evolution of the trajectory aroundtwo fixed points. The

trajectory remains bounded as variations inx, y andz remain within certain fixed limits

determined by the constant parameters. The boundedness andthe aperiodicity satisfy



Figure A.1: (a) The evolution of the variablesx, y andz of the Lorenz system. The
parameter values areσ = 10, r = 28 andb = 8/3 with the initial condition
chosen asx0 = 0.1, y0 = 0, andz0 = 0. (b) The evolution of the trajectory
starting at the prescribed initial condition in a phase space consisting of the
three variables. It has a characteristic shape more popularly known as the
’Lorenz butterfly’.

two out of the three requirements which the trajectory of thevariables must satisfy in

order to be termed chaotic.

A third additional requirement for chaos is the sensitive dependence of the trajecto-

ries on the initial conditions. For a chaotic system, nearbytrajectories diverge exponen-
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tially even when they are separated by an infinitesimal separation initially. Figure A.2

shows the evolution of the variablex as describe by the Lorenz system starting from

two slightly different initial conditions:x0,1 = 0.1, x0,1 = 0.100001.

Figure A.2: An illustration of the sensitive dependence of the trajectory on the initial
condition. (a) The evolution of the dynamical variablex starting from two
slightly different initial conditions,x0,1 = 0.1 (black), x0,1 = 0.100001
(gray). (b)The corresponding trajectories in phase space.

As in evident from Fig. A.2, the trajectories are indistinguishable initially; how-

ever, they gradually diverge and two separate signals are visible in the time evolution.

Correspondingly, two separate trajectories are visible inthe phase space.

A.2 Results on phase space reconstruction

The technique of phase space reconstruction outlined in chapter 3 was applied to the

time series data ofx obtained from the Lorenz attractor with the following initial con-

dition x0 = 0.1, y0 = 0, z0 = 0. The time step was chosen as∆t = 0.01 and data was

acquired for 25000 time steps. The first 5000 points were removed from the analysis to

account for the transients. Shown in Fig.??(a, b) are the average mutual informationIτ

and the variableE1 for thex variable. Based on the saturation ofE1, we can conclude

that the data comes out of a three dimensional system and thatthe optimal time delay is
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τopt = 18 time steps. The reconstructed phase space is shown in Fig.??(c). We see that

the topological features of the original attractor such as the double loop are reproduced

in the reconstructed phase space as well. This validates theproposed methodology to

reconstruct the attractor of combustion dynamics from a single measured pressure time

trace.

Figure A.3: (a) The variation of the average mutual information with the number of
time stepsτ . (b) The variation of the measureE1 with the dimension of the
attractor. (c) The phase space reconstructed using the dynamic variablex
through delay embedding.
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APPENDIX B

Evaluation of Hurst exponents and the multifractal

spectrum

To estimate the Hurst exponent using detrended fluctuation analysis (DFA), the time

signalp(t) of lengthN is first mean-adjusted and then a cumulative deviate seriesyk

(see Fig. B.1)is obtained as:

yk =

k
∑

t=1

(p(t)−m) (B.1)

where

m =
1

N

N
∑

t=1

p(t) (B.2)

Figure B.1: A portion of the time signal (gray) and its cumulate deviate series (black)
for (a) combustion noise and (b) a monofractal time series, and (c) Gaussian
white noise. The monoftactal time series is persistent witha noticeable
trend whereas combustion noise is anti-persistent with tendency towards
mean reversion.

The deviate series is then divided into a numbernw of non-overlapping segments

(yi(t), i = 1, ..., nw) of equal spanw. Shown in Fig. B.2 is a part of the combustion



noise signal which has been split into non-overlapping bins. In order to remove the

trends in these segments, a local linear fityi is made separately to each of the sections

of the deviate seriesyi. These linear fits are shown as dashed lines in Fig. B.2. The de-

trended fluctuations are then obtained by subtracting the polynomial fit from the deviate

series.

The structure function of orderq and spanw,F q
w can be obtained from the detrended

fluctuations as:

F q
w =





1

nw

nw
∑

i=1





√

√

√

√

1

w

w
∑

t=1

(yi(t)− yi)2





q



1/q

(B.3)

The Hurst exponentH2 is then obtained from the slope of the linear regime in a

log-log plot ofF 2
w for various span sizesw. Forq = 0, the structure function is defined

as (?):

F 0
w = exp

(

1

2nw

nw
∑

i=1

log

(

1

w

w
∑

t=1

(yi(t)− yi)
2

))

(B.4)

The generalized Hurst exponentsHq are the slopes of the straight lines in a log-

log plot of the structure functions for various order exponents q for variations in the

segment width (time interval),w. The information contained inHq for differentq can

alternatively be represented as a spectrum of singularities f(α) that are related to the

slopes of the generalized Hurst exponents via a Legendre transform as follows:

τq = qHq − 1, (B.5a)

α =
∂τq
∂q

, (B.5b)

f(α) = qα− τq (B.5c)

This spectrum, represented as a plot off(α) againstα, is known as the multifractal

spectrum (also called the Hölder spectrum) and provides information on varying nature

of the fractal dimension in the data.
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Figure B.2: The cumulative deviate series and its linear fit in 20 segments from a portion
of the combustion noise signal. The deviate seriesyi(t) is shown in gray
and the linear fityi and its local standard deviation are shown as black
dashed lines.
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